Fall Semester L-2, T-II

COU	RSE INFO	RMATION									
	e Code										
	e Title	: Theory of Computation		: 3.00							
	REQUISIT	E									
N/A											
		STRUCTURE									
		ducation (OBE)									
SYNC	OPSIS/RAT	IONALE									
	arn how pro ich a compu	blems can be efficiently solved o ter works.	on a model of c	omputation us	ing algo	rithms ar	nd the el	ementary ways			
OBJE	ECTIVE										
1. U	Inderstand th	ne mathematical foundations of co	omputation inc	luding automa	ta theory	1.					
		foundation of the theory of forma	-	-	2						
3. A	nalyse and	design finite automata, pushdow	n automata, Ti	uring machine	s, forma	l languag	ges and	languages, and			
gı	rammars.			-			-				
TEAT			G								
LEAF	KNING OU	TCOMES & GENERIC SKILI	79	D1	1	1	T	A			
No.		Course Learning Outcome		Bloom's Taxonomy	СР	CA	KP	Assessment Methods			
CO1		and evaluating the mathematica utation including mathematical on.		C3, C5	1		1, 3	T, F			
CO2		and creating finite automatans for regular languages.	and regular	C4, C6	1, 2		1, 3, 5	T, F			
CO3	pushdowr	and creating context free g automata for context free langua	ges.	C4, C6	1, 2		1, 5	T, F			
CO4		ding and analysing Turing ming the limits of algorithmic solva		C2, C4	1		1, 3	T, F			
	Complex Pro	oblems, CA-Complex Activities,	KP-Knowledge	e Profile,T – T	est ; F –	Final Ex	xam)				

COURSE CONTENT

Finite automata: deterministic finite automata, nondeterministic finite automata, equivalence and conversion of deterministic and nondeterministic finite automata, Regular languages: regular expressions, nonregular languages, the pumping lemma; Context free languages; Context free grammars, Chomsky normal form, Greibach Normal Form; Pushdown automata; Turing Machines: basic machines, configuration, computing with Turing machines, combining Turing machines; Decidability.

SKILL MAPPING

No.	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
INU.	Course Learning Outcome		5	6	7	8	9	10	11	12			
CO1	Identify the mathematical foundations of computation including mathematical proofs for computation.		Н										
CO2	Design and/or analyse finite automata and regular expressions for regular languages.			Н									
CO3	Design and/or analyse context free grammar and pushdown automata for context free languages.				Н								
CO4	Illustrate Turing machines and investigate the limits of algorithmic solvability.				Н								

(H-High, M-Medium, L-low)

TEACHING LEARNING STRATEGY				
Teaching and Learning Activities	Engagement (hours)			
Face-to-Face Learning				
Lecture	42			
Practical / Tutorial / Studio	-			
Student-Centred Learning	-			
Self-Directed Learning				
Non-face-to-face learning	84			
Revision	21			
Assessment Preparations	-			
Formal Assessment				
Continuous Assessment	2			
Mid Term Exam	1			
Final Examination	3			
Total	153			

TEACHING METHODOLOGY

Lectures, class performances, class tests, mid-term exam, final exam.

COURSE SCHEDULE

Week	Lecture	Topics	LECTURER
1	1 Lec 1 Automata, Computability, and Complexity, Mathematical Notation and		
	Lec 2	Terminology, Sets, Sequences and Tuples, Functions and Relations, Strings	
	Lec 3	and Languages, Definitions, Theorems and Proofs.	
2	Lec 4	Finite Automata	Class Test 1
	Lec 5	Formal Definition of a Finite Automaton	Class Test I
	Lec 6	Examples of Finite Automata	
3	Lec 7	Formal Definition of Computation	
	Lec 8-9	Designing Deterministic Finite Automata	
4	Lec 10	The Regular Operations	
	Lec 11	Union operation, Concatenation operation, Star operation, Closure under the	
	Lec 12	Regular Operations	
5	5 Lec 13 Nondeterminism		
	Lec 14 Equivalence of NFAs and DFAs		Class Test 2
	Lec 15	Closure under the Regular Operations	Class Test 2
6	Lec 16	Regular expressions	
	Lec 17	Formal definition of a regular expression	
	Lec 18		
7	Lec 19	Nonregular Languages,	

	Lec 20	The Pumping Lemma for Regular Languages.	
	Lec 21		
8	Lec 22	Context-Free Languages	
	Lec 23	Context-Free Grammars	
	Lec 24	Formal Definition of CFG	
9	Lec 25	Examples of CFG, Designing CFG	Mid Term
	Lec 26	Ambiguity	who rerm
	Lec 27		
10	Lec 31	Chomsky Normal Form I	
	Lec 32-33	Chomsky Normal Form II	
11	Lec 28	Pushdown Automata	
	Lec 29	Formal Definition of a Pushdown Automaton	
	Lec 30	Examples of Pushdown Automata.	
12	Lec 34	Non-context-free languages	
	Lec 35	The pumping lemma for context-free languages and proofs	
	Lec 36		Class Test 3
13	Lec 37	Turning Machines, Formal Definition of a	
	Lec 38	Turing Machine, Examples of Turing Machines.	
	Lec 39		
14	Lec 40-42	Decidability, decidable languages,	
		Decidable problems concerning Regular languages	

ASSESSMENT STRATEGY

			СО	Blooms Taxonomy			
Comp	ponents	Grading	0	Blooms Taxonomy			
			CO1	C3, C5			
	Test 1-3	20%	CO2	C4, C6			
Continuous			CO3	C4, C6			
Assessment (40%)	Class Performance	5%	CO3	C4, C6			
	Mid term	15%	CO2	C4, C6			
		1370	CO3	C4, C6			
			CO1	C3, C5			
Final Exam 60%		600/	CO2	C4, C6			
		00%	CO3	C4, C6			
			CO4	C2, C4			
Total Marks 100%							

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Introduction to the Theory of Computation, 3rd edition, 2012- Michael Sipser.
- 2. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley Longman Publishing Co., Inc., 3rd ed., 2006 J. E. Hopcroft, R. Motwani, and J. D. Ullman.
- **3.** Elements of the Theory of Computation. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2nd edition, 1997- H. R. Lewis and C. H. Papadimitriou.