

CSE-217: Theory of Computation

MD. JAKARIA

LECTURER
DEPT. OF CSE, MIST

NFA Design Example

1. Design an NFA with $\sum=\{0,1\}$ accepts all string ending with 01.
2. Design an NFA with $\sum=\{0,1\}$ in which double ' 1 ' is followed by double ' 0 '.
3. Design an NFA which accepts all binary strings where the last symbol is 0 or that contain only 1's.
4. Design an NFA with $\sum=\{0,1,2\}$ where each string has at least 2 symbols and each string starts and ends with same symbol.
5. Give an NFA for the set of all binary strings that have either the number of 0 's odd, or the number of 1's not a multiple of 3, or both.
6. Design an NFA, N_{6} which has an input alphabet $\{0\}$, accepts all strings of the form 0^{k} where k is a multiple of 2 or 3 . For example, N_{6} accepts the strings $€, 00,000,0000$, and 000000 , but not 0 or 00000.

NFA Design Example

1. Design an NFA with $\sum=\{0,1\}$ accepts all string ending with 01 .

2. Design an NFA with $\sum=\{0,1\}$ in which double ' 1 ' is followed by double ' 0 '.

NFA Design Example

3. Design an NFA which accepts all binary strings where the last symbol is 0 or that contain only 1 's.

4. Design an NFA with $\sum=\{0,1,2\}$ where each string has at least 2 symbols and each string starts and ends with same symbol.

NFA Design Example

5. Give an NFA for the set of all binary strings that have either the number of 0 's odd, or the number of 1 's not a multiple of 3 , or both.

NFA Design Example

6. Design an NFA, N_{6} which has an input alphabet $\{0\}$, accepts all strings of the form 0^{k} where k is a multiple of 2 or 3 . For example, N_{6} accepts the strings $\epsilon, 00,000,0000$, and 000000 , but not 0 or 00000 .

