
NONREGULAR LANGUAGE THE PUMPING LEMMA FOR REGULAR LANGUAGES

CSE-217: Theory of Computation
Non Regular Language

Md Jakaria

Lecturer

Department of Computer Science and Engineering

Military Institute of Science and Technology

August 27, 2019

Md Jakaria MIST Theory of Computation August 27, 2019 1 / 11



NONREGULAR LANGUAGE THE PUMPING LEMMA FOR REGULAR LANGUAGES

NONREGULAR LANGUAGE

Md Jakaria MIST Theory of Computation August 27, 2019 2 / 11



NONREGULAR LANGUAGE THE PUMPING LEMMA FOR REGULAR LANGUAGES

NONREGULAR LANGUAGE

1 To understand the power of finite automata,

one must also understand their limitations.
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NONREGULAR LANGUAGE

1 To understand the power of finite automata,

one must also understand their limitations.

2 Let’s take the language B = {0n1n|n ≥ 0}.
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NONREGULAR LANGUAGE THE PUMPING LEMMA FOR REGULAR LANGUAGES

NONREGULAR LANGUAGE
Example

Consider two languages over alphabet Σ = {0, 1} :

C = {w| w has an equal number of 0’s and 1’s}

D = {w| w has an equal number of occurrences

of 01 and 10 as substrings}.
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NONREGULAR LANGUAGE

D = {w| w has an equal number of occurrences

of 01 and 10 as substrings}.

ǫ
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NONREGULAR LANGUAGE

D = {w| w has an equal number of occurrences

of 01 and 10 as substrings}.

ǫ belong

0 belong

1 belong

01 not belong

10 not belong

010 belong

101 belong

0110 belong

01100 belong
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D = {w| w has an equal number of occurrences

of 01 and 10 as substrings}.
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D = {w| w has an equal number of occurrences

of 01 and 10 as substrings}.

110
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D = {w| w has an equal number of occurrences

of 01 and 10 as substrings}.
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NONREGULAR LANGUAGE

D = {w| w has an equal number of occurrences

of 01 and 10 as substrings}.

110 not belong

11010 not belong

w should toggle between 0 and 1 an equal

number of times
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D = {w| w has an equal number of occurrences

of 01 and 10 as substrings}.

110 not belong

11010 not belong

w should toggle between 0 and 1 an equal

number of times

D = {w | w starts and ends with same symbol }.
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NONREGULAR LANGUAGE

D = {w| w has an equal number of occurrences

of 01 and 10 as substrings}.

110 not belong

11010 not belong

w should toggle between 0 and 1 an equal

number of times

D = {w | w starts and ends with same symbol }.

ǫ ∪ 0 ∪ 1 ∪ 0Σ∗1 ∪ 1Σ∗1
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D = {w | w starts and ends with same symbol }.

ǫ ∪ 0 ∪ 1 ∪ 0Σ∗1 ∪ 1Σ∗1

Md Jakaria MIST Theory of Computation August 27, 2019 7 / 11



NONREGULAR LANGUAGE THE PUMPING LEMMA FOR REGULAR LANGUAGES

THE PUMPING LEMMA FOR REGULAR LANGUAGES

Md Jakaria MIST Theory of Computation August 27, 2019 8 / 11



NONREGULAR LANGUAGE THE PUMPING LEMMA FOR REGULAR LANGUAGES

Pumping Lemma

1 The technique for proving nonregularity

stems from a theorem called the pumping

lemma.

2 This theorem states that all regular

languages have a special property.

3 If a language does not have this property, we

are guaranteed that it is not regular.

Md Jakaria MIST Theory of Computation August 27, 2019 9 / 11



The Pumping Lemma for Regular Languages
Sipser, 1.4, p-77

|s| represents the length of string s.

y i means that i copies of y are concatenated together.

y0 equals ǫ.
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The Pumping Lemma for Regular Languages
Sipser, 1.4, p-77

When s is divided into xyz, either x or z may be ǫ.

But condition 2 says that y 6= ǫ.

Without condition 2 the theorem would be trivially true.
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The Pumping Lemma for Regular Languages
Sipser, 1.4, p-77

Condition 3 states that the pieces x and y together have

length at most p.

It is an extra technical condition that we occasionally find

useful when proving certain languages to be nonregular.
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The Pumping Lemma for Regular Languages —

continued
Sipser, 1.4, p-77

PROOF IDEA

Let M = (Q,Σ, δ, q1,F ) be a DFA that recognizes A.

We assign the pumping length p to be the number of states

of M.

We show that any string s in A of length at least p may be

broken into the three pieces xyz, satisfying our three

conditions.

What if no strings in A are of length at least p?

Then our task is even easier because the theorem

becomes vacuously true.

Obviously the three conditions hold for all strings of length

at least p if there aren’t any such strings.
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The Pumping Lemma. . . — continued
Sipser, 1.4, p-77

If s in A has length at least p, consider the sequence of

states that M goes through when computing with input s.

It starts with q1 the start state, then goes to, say, q3, then,

say, q20, then q9, and so on, until it reaches the end of s in

state q13.



The Pumping Lemma. . . — continued
Sipser, 1.4, p-77

With s in A, we know that M accepts s, so q13 is an accept

state.

If we let n be the length of s, the sequence of states

q1, q3, q20, q9, . . . , q13 has length n + 1.



The Pumping Lemma. . . — continued
Sipser, 1.4, p-77

Because n is at least p, we know that n+1 is greater than

p, the number of states of M.

Therefore, the sequence must contain a repeated state.

This result is an example of the pigeonhole principle.



The Pumping Lemma. . . — continued
Sipser, 1.4, p-77

State q9 is the one that repeats.



The Pumping Lemma for Regular Languages

L = {w | w starts and ends with 0, |w | ≥ 2}

L = 0Σ∗0

q0 q1 q2
0

0, 1

0
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The Pumping Lemma for Regular Languages

L = a(aab)∗ba

q0 q1 q2

q3

q4 q5

a a

a
b

b

a
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The Pumping Lemma. . . — continued
Sipser, 1.4, p-77

Piece x is the part of s appearing before q9.

Piece y is the part between the two appearances of q9.

Piece z is the remaining part of s, coming after the second

occurrence of q9.



The Pumping Lemma. . . — continued
Sipser, 1.4, p-77

x takes M from the state q1 to q9.

y takes M from q9 back to q9.

z takes M from q9 to the accept state q13.



The Pumping Lemma. . . — continued
Sipser, 1.4, p-77

Suppose that we run M on input xyyz.

We know that x takes M from q1 to q9.



The Pumping Lemma. . . — continued
Sipser, 1.4, p-77

Then the first y takes it from q9 back to q9 , as does the

second y .

Then z takes it to q13.



The Pumping Lemma. . . — continued
Sipser, 1.4, p-77

With q13 being an accept state, M accepts input xyyz.

Similarly, it will accept xy iz for any i > 0.



The Pumping Lemma. . . — continued
Sipser, 1.4, p-77

For the case i = 0, xy iz = xz, which is accepted for similar

reasons.

That establishes condition 1.



The Pumping Lemma. . . — continued
Sipser, 1.4, p-77

Checking condition 2, we see that |y | > 0, as it was the

part of s that occurred between two different occurrences

of state q9.



The Pumping Lemma. . . — continued
Sipser, 1.4, p-77

In order to get condition 3, we make sure that q9 is the first

repetition in the sequence.

By the pigeonhole principle, the first p + 1 states in the

sequence must contain a repetition.

Therefore, |xy | ≤ p.



The Pumping Lemma. . . — continued
Sipser, 1.4, p-77

PROOF

Let M = (Q,Σ, δ, q1,F ) be a DFA recognizing A and p be

the number of states of M.

Let s = s1s2 . . . sn be a string in A of length n, where n ≥ p.

Let r1, r2, . . . , rn+1 be the sequence of states that M enters

while processing s.

So ri+1 = δ(ri , si) for 1 ≥ i ≥ n.

This sequence has length n + 1, which is at least p + 1.
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The Pumping Lemma. . . — continued
Sipser, 1.4, p-77

Among the first p + 1 elements in the sequence, two must

be the same state.

By the pigeonhole principle. We call the first of these rj and

the second rℓ.

Because rℓ occurs among the first p + 1 places in a

sequence starting at r1, we have ℓ ≥ p + 1.
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The Pumping Lemma. . . — continued
Sipser, 1.4, p-77

Let x = s1 . . . sj−1.

y = sj . . . sℓ−1.

z = sℓ . . . sn.
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The Pumping Lemma. . . — continued
Sipser, 1.4, p-77

Let x = s1 . . . sj−1.

y = sj . . . sℓ−1.

z = sℓ . . . sn.

x takes M from r1 to rj .

y takes M from rj to rj .

z takes M from rj to rn+1, which is an accept state, M must

accept xy iz for i ≥ 0.
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The Pumping Lemma. . . — continued
Sipser, 1.4, p-77

We know that j 6= ℓ, so |y | > 0.

ℓ ≥ p + 1, so |y | > 0.

ℓ ≥ p + 1, so |xy | ≥ p.

Thus we have satisfied all conditions of the pumping

lemma.
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The Pumping Lemma. . . — continued
Sipser, 1.4, p-80

To use the pumping lemma to prove that a language B is

not regular, first assume that B is regular in order to obtain

a contradiction.

Then use the pumping lemma to guarantee the existence

of a pumping length p such that all strings of length p or

greater in B can be pumped.
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The Pumping Lemma. . . — continued
Sipser, 1.4, p-80

Next, find a string s in B that has length p or greater but

that cannot be pumped.
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The Pumping Lemma. . . — continued
Sipser, 1.4, p-80

Finally, demonstrate that s cannot be pumped by

considering all ways of dividing s into x , y , and z (taking

condition 3 of the pumping lemma into account if

convenient).

For each such division, find a value i where xy iz 6∈ B.
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The Pumping Lemma. . . — continued
Sipser, 1.4, p-80

This final step often involves grouping the various ways of

dividing s into several cases and analyzing them

individually.

The existence of s contradicts the pumping lemma if B

were regular.

Hence B cannot be regular.
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The Pumping Lemma. . . — continued
Sipser, 1.4, p-80

Finding s sometimes takes a bit of creative thinking.

You may need to hunt through several candidates for s

before you discover one that works.

Try members of B that seem to exhibit the “essence” of B’s

nonregularity.
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Example
Sipser, Example 1.73, p-80

Let B be the language {0n1n | n ≥ 0}.

We use the pumping lemma to prove that B is not regular.

The proof is by contradiction.
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Example — continued
Sipser, Example 1.73, p-80

Assume to the contrary that B is regular.

Let p be the pumping length given by the pumping lemma.
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Example — continued
Sipser, Example 1.73, p-80

Choose s to be the string 0p1p.

Because s is a member of B and s has length more than p,

the pumping lemma guarantees that s can be split into

three pieces, s = xyz.

Where for any i ≥ 0 the string xy iz is in B.
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Example — continued
Sipser, Example 1.73, p-80

We consider three cases to show that this result is

impossible.

1. The string y consists only of 0s.

In this case, the string xyyz has more 0s than 1s and so is

not a member of B, violating condition 1 of the pumping

lemma.

This case is a contradiction.
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Example — continued
Sipser, Example 1.73, p-80

We consider three cases to show that this result is

impossible.

2. The string y consists only of 1s.

This case also gives a contradiction.
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Example — continued
Sipser, Example 1.73, p-80

We consider three cases to show that this result is

impossible.

3. The string y consists of both 0s and 1s.

In this case, the string xyyz may have the same number of

0s and 1s, but they will be out of order with some 1s before

0s.

Hence it is not a member of B, which is a contradiction.
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Example — continued
Sipser, Example 1.73, p-80

Thus a contradiction is unavoidable if we make the

assumption that B is regular.

So B is not regular.

Dr. Muhammad Masroor Ali CSE 211 (Theory of Computation) 155 / 183

WhiteWalker
Textbox

WhiteWalker
Textbox



Example
Sipser, Example 1.74, p-80

C = {w | w has an equal number of 0s and 1s}.

We use the pumping lemma to prove that C is not regular.

The proof is by contradiction.
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Example — continued
Sipser, Example 1.74, p-80

Assume to the contrary that C is regular.

Let p be the pumping length given by the pumping lemma.

Let s be the string 0p1p.

With s being a member of C and having length more than

p, the pumping lemma guarantees that s can be split into

three pieces.

s = xyz, where for any i ≥ 0 the string xy iz is in C.
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Example — continued
Sipser, Example 1.74, p-80

We would like to show that this outcome is impossible.
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Example — continued
Sipser, Example 1.74, p-80

But wait, it is possible!

If we let x and z be the empty string and y be the string

0p1p, then xy iz always has an equal number of 0s and 1s

and hence is in C.

So it seems that s can be pumped.
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Example — continued
Sipser, Example 1.74, p-80

Here condition 3 in the pumping lemma is useful.

It stipulates that when pumping s, it must be divided so

that |xy | ≤ p.

That restriction on the way that s may be divided makes it

easier to show that the string s = 0p1p we selected cannot

be pumped.

If |xy | ≤ p, then y must consist only of 0s, so xyyz 6∈ C.

Therefore, s cannot be pumped.

That gives us the desired contradiction.
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Example
Sipser, Example 1.75, p-81

F = {ww | w ∈ {0, 1}∗}.

We use the pumping lemma to prove that F is not regular.
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Example — continued
Sipser, Example 1.75, p-81

Assume to the contrary that F is regular.

Let p be the pumping length given by the pumping lemma.

Let s be the string 0p10p1.

Because s is a member of F and s has length more than p,

the pumping lemma guarantees that s can be split into

three pieces, s = xyz, satisfying the three conditions of the

lemma.
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Example — continued
Sipser, Example 1.75, p-81

We show that this outcome is impossible.

Condition 3 is once again crucial because without it we

could pump s if we let x and z be the empty string.

With condition 3 the proof follows because y must consist

only of 0s, so xyyz 6∈ F .
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Example — continued
Sipser, Example 1.75, p-81

Observe that we chose s = 0p10p1 to be a string that

exhibits the “essence” of the nonregularity of F , as

opposed to, say, the string 0p0p.

Even though 0p0p is a member of F , it fails to demonstrate

a contradiction because it can be pumped.
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Example
Sipser, Example 1.76, p-82

We demonstrate a nonregular unary language.

D =

{

1n2
| n ≥ 0

}

.

We use the pumping lemma to prove that D is not regular.

The proof is by contradiction.
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Example — continued
Sipser, Example 1.76, p-82

Assume to the contrary that D is regular.

Let p be the pumping length given by the pumping lemma.
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Example — continued
Sipser, Example 1.76, p-82

Let s be the string 1p2
.

Because s is a member of D and s has length at least p,

the pumping lemma guarantees that s can be split into

three pieces, s = xyz.

where for any i ≥ 0 the string xy iz is in D.
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Example — continued
Sipser, Example 1.76, p-82

We show that this outcome is impossible.

The sequence of perfect squares:

0, 1, 4, 9, 16, 25, 36, 49, . . .

Note the growing gap between successive members of this

sequence.

Large members of this sequence cannot be near each

other.
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Example — continued
Sipser, Example 1.76, p-82

Now consider the two strings xyz and xy2z.

These strings differ from each other by a single repetition

of y .

Consequently their lengths differ by the length of y .

By condition 3 of the pumping lemma, |xy | ≤ p and thus

|y | ≤ p.
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Example — continued
Sipser, Example 1.76, p-82

We have |xyz| = p2 and so |xy2z| ≤ p2 + p.

But p2 + p < p2 + 2p + 1 = (p + 1)2.

Moreover, condition 2 implies that y is not the empty string

and so |xy2z| > p2.

Therefore, the length of xy2z lies strictly between the

consecutive perfect squares p2 and (p + 1)2.

Hence this length cannot be a perfect square itself.

So we arrive at the contradiction xy2z 6∈ D and conclude

that D is not regular.
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Example
Sipser, Example 1.77, p-82

Let E be the language
{

0i1j | i > j
}

.

We use the pumping lemma to prove that E is not regular.

The proof is by contradiction.
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Example — continued
Sipser, Example 1.77, p-82

Assume that E is regular.

Let p be the pumping length for E given by the pumping

lemma.
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Example — continued
Sipser, Example 1.77, p-82

Let s = 0p+11p.

Then s can be split into xyz, satisfying the conditions of the

pumping lemma.

By condition 3, y consists only of 0s.
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Example — continued
Sipser, Example 1.77, p-82

Let’s examine the string xyyz to see whether it can be in E .

Adding an extra copy of y increases the number of 0s.

But, E contains all strings in 01 that have more 0s than 1s.

So increasing the number of 0s will still give a string in E .

No contradiction occurs.
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Example — continued
Sipser, Example 1.77, p-82

We need to try something else.

The pumping lemma states that xy iz ∈ E even when i = 0.
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Example — continued
Sipser, Example 1.77, p-82

So let’s consider the string xy0z = xz.

Removing string y decreases the number of 0s in s.

Recall that s has just one more 0 than 1.

Therefore, xz cannot have more 0s than 1s, so it cannot be

a member of E .

Thus we obtain a contradiction.
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Example
Hopcroft, Motwani, and Ullman, Example 4.3, p-129

Let us show that the language Lpr consisting of all strings

of 1’s whose length is a prime is not a regular language.

Suppose it were.

Then there would be a constant n satisfying the conditions

of the pumping Lemma.
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Example — continued
Hopcroft, Motwani, and Ullman, Example 4.3, p-129

Consider some prime p ≥ n + 2.

There must be such a p, since there are an infinity of

primes.
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Example — continued
Hopcroft, Motwani, and Ullman, Example 4.3, p-129

Let w = 1r .

By the pumping lemma, we can break w = xyz such that

y 6= ǫ and |xy | ≤ n.

Let |y | = m.

Then |xz| = p − m.
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Example — continued
Hopcroft, Motwani, and Ullman, Example 4.3, p-129

Now consider the string xyp−mz.

This must be in Lpr by the pumping lemma, if Lpr really is

regular.

However,

|xyp−mz| = |xz|+ (p − m)|y |

= p − m + (p − m)m

= (m + 1)(p − m)

It looks like |xyp−mz| is not a prime, since it has two factors

(m + 1) and (p − m).
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Example — continued
Hopcroft, Motwani, and Ullman, Example 4.3, p-129

However, we must check that neither of these factors are 1.

Since then (m + 1)(p − m) might be a prime after all.

But m + 1 > 1, since y 6= ǫ tells us m ≥ 1.

Also, p − m ≥ 1, since p ≥ n + 2 was chosen, and m ≤ n

since

m = |y | ≤ |xy | ≤ n

Thus, p − m ≥ 2.
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Example — continued
Hopcroft, Motwani, and Ullman, Example 4.3, p-129

Again we have started by assuming the language in

question was regular.

We derived a contradiction by showing that some string not

in the language was required by the pumping lemma to be

in the language.

Thus, we conclude that Lpr is not a regular language.
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