CSE-217: Theory of Computation

Non Regular Language

Md Jakaria

Lecturer
Department of Computer Science and Engineering Military Institute of Science and Technology

August 27, 2019

NONREGULAR LANGUAGE

NONREGULAR LANGUAGE

1 To understand the power of finite automata, one must also understand their limitations.

NONREGULAR LANGUAGE

1 To understand the power of finite automata, one must also understand their limitations.

2 Let's take the language $B=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.

NONREGULAR LANGUAGE

Consider two languages over alphabet $\Sigma=\{0,1\}$:
$C=\{w \mid w$ has an equal number of 0's and 1 's $\}$
$D=\{w \mid w$ has an equal number of occurrences of 01 and 10 as substrings\}.

NONREGULAR LANGUAGE

$D=\{w \mid w$ has an equal number of occurrences of 01 and 10 as substrings\}.
$\square \epsilon$

NONREGULAR LANGUAGE

$D=\{w \mid w$ has an equal number of occurrences of 01 and 10 as substrings\}.
$\square \epsilon$ belong
$\square 0$

NONREGULAR LANGUAGE

$D=\{w \mid$ w has an equal number of occurrences of 01 and 10 as substrings\}.
$\square \epsilon$
0
belong belong
$\square 1$

NONREGULAR LANGUAGE

$D=\{w \mid w$ has an equal number of occurrences of 01 and 10 as substrings\}.
$\square \epsilon$
\square
$\square 1$
$\square 01$
belong belong belong

NONREGULAR LANGUAGE

$D=\{w \mid$ w has an equal number of occurrences of 01 and 10 as substrings\}.
$\square \epsilon$
$\square 0$
-1
$\square 01$

- 10
belong belong belong not belong

NONREGULAR LANGUAGE

$D=\{w \mid w$ has an equal number of occurrences of 01 and 10 as substrings\}.
$\square \epsilon$

- 0
-1
$\square 01$
- 10
$\square 010$
belong belong belong not belong
not belong

NONREGULAR LANGUAGE

$D=\{w \mid w$ has an equal number of occurrences of 01 and 10 as substrings\}.
$\square \epsilon$
$\square 0$
$\square 1$
$\square 01$

- 10
$\square 010$
- 101
belong belong belong not belong
not belong belong

NONREGULAR LANGUAGE

$D=\{w \mid w$ has an equal number of occurrences of 01 and 10 as substrings\}.
$\square \epsilon$
$\square 0$
-1
-01

- 10
$\square 010$
- 101

■ 0110

belong belong belong

not belong
not belong
belong
belong

NONREGULAR LANGUAGE

$D=\{w \mid w$ has an equal number of occurrences of 01 and 10 as substrings\}.
$\square \epsilon$
$\square 0$
-1
-01

- 10
$\square 010$
- 101

■ 0110
$\square 01100$
belong belong
belong
not belong
not belong
belong
belong
belong

NONREGULAR LANGUAGE

$D=\{w \mid w$ has an equal number of occurrences of 01 and 10 as substrings\}.
$\square \epsilon$
$\square 0$
$\square 1$
-01

- 10
$\square 010$
- 101

■ 0110
$\square 01100$
$\square 1101110011$

NONREGULAR LANGUAGE

$D=\{w \mid w$ has an equal number of occurrences of 01 and 10 as substrings\}.
$\square \epsilon$
$\square 0$
$\square 1$
-01

- 10
$\square 010$
- 101

■ 0110
$\square 01100$
$\square 1101110011$
belong
belong
belong
not belong
not belong
belong
belong
belong
belong
belong

NONREGULAR LANGUAGE

$D=\{w \mid w$ has an equal number of occurrences
of 01 and 10 as substrings $\}$.
$\square 110$

NONREGULAR LANGUAGE

$D=\{w \mid w$ has an equal number of occurrences of 01 and 10 as substrings\}.
$\square 110$
$\square 11010$

NONREGULAR LANGUAGE

$D=\{w \mid w$ has an equal number of occurrences of 01 and 10 as substrings\}.

- 110
not belong
$\square 11010$ not belong
■ w should toggle between 0 and 1 an equal number of times

NONREGULAR LANGUAGE

$D=\{w \mid w$ has an equal number of occurrences of 01 and 10 as substrings\}.

- 110 not belong
$\square 11010$ not belong
\square w should toggle between 0 and 1 an equal number of times
$D=\{w \mid w$ starts and ends with same symbol $\}$.

NONREGULAR LANGUAGE

$D=\{w \mid w$ has an equal number of occurrences of 01 and 10 as substrings\}.

- 110
not belong
$\square 11010$ not belong
\square w should toggle between 0 and 1 an equal number of times
$D=\{w \mid w$ starts and ends with same symbol $\}$.

$$
\epsilon \cup 0 \cup 1 \cup 0 \Sigma^{*} 1 \cup 1 \Sigma^{*} 1
$$

NONREGULAR LANGUAGE

$D=\{w \mid w$ starts and ends with same symbol $\}$.

THE PUMPING LEMMA FOR REGULAR LANGUAGES

Pumping Lemma

1 The technique for proving nonregularity stems from a theorem called the pumping lemma.

2 This theorem states that all regular languages have a special property.

3 If a language does not have this property, we are guaranteed that it is not regular.

The Pumping Lemma for Regular Languages

Sipser, 1.4, p-77

THEOREM 1.70

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s=x y z$, satisfying the following conditions:

1. for each $i \geq 0, x y^{i} z \in A$,
2. $|y|>0$, and
3. $|x y| \leq p$.
$\square|s|$ represents the length of string s.
$\square y^{i}$ means that i copies of y are concatenated together.

- y^{0} equals ϵ.

The Pumping Lemma for Regular Languages

Sipser, 1.4, p-77

THEOREM 1.70

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s=x y z$, satisfying the following conditions:

1. for each $i \geq 0, x y^{i} z \in A$,
2. $|y|>0$, and
3. $|x y| \leq p$.
\square When s is divided into $x y z$, either x or z may be ϵ.
■ But condition 2 says that $y \neq \epsilon$.

- Without condition 2 the theorem would be trivially true.

The Pumping Lemma for Regular Languages

Sipser, 1.4, p-77

THEOREM 1.70

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, $s=x y z$, satisfying the following conditions:

1. for each $i \geq 0, x y^{i} z \in A$,
2. $|y|>0$, and
3. $|x y| \leq p$.

■ Condition 3 states that the pieces x and y together have length at most p.
■ It is an extra technical condition that we occasionally find useful when proving certain languages to be nonregular.

The Pumping Lemma for Regular Languages continued

Sipser, 1.4, p-77

PROOF IDEA

- Let $M=\left(Q, \Sigma, \delta, q_{1}, F\right)$ be a DFA that recognizes A.
- We assign the pumping length p to be the number of states of M.
■ We show that any string s in A of length at least p may be broken into the three pieces $x y z$, satisfying our three conditions.
■ What if no strings in A are of length at least p ?
■ Then our task is even easier because the theorem becomes vacuously true.
■ Obviously the three conditions hold for all strings of length at least p if there aren't any such strings.

The Pumping Lemma. . . - continued

 Sipser, 1.4, p-77
FIGURE 1.71

Example showing state q_{9} repeating when M reads s

■ If s in A has length at least p, consider the sequence of states that M goes through when computing with input s.
■ It starts with q_{1} the start state, then goes to, say, q_{3}, then, say, q_{20}, then q_{9}, and so on, until it reaches the end of s in state q_{13}.

The Pumping Lemma. . . - continued

 Sipser, 1.4, p-77
FIGURE 1.71

Example showing state q_{9} repeating when M reads s

■ With s in A, we know that M accepts s, so q_{13} is an accept state.
\square If we let n be the length of s, the sequence of states $q_{1}, q_{3}, q_{20}, q_{9}, \ldots, q_{13}$ has length $n+1$.

The Pumping Lemma. . . - continued

 Sipser, 1.4, p-77
FIGURE 1.71

Example showing state q_{9} repeating when M reads s

■ Because n is at least p, we know that $n+1$ is greater than p, the number of states of M.
■ Therefore, the sequence must contain a repeated state.
■ This result is an example of the pigeonhole principle.

The Pumping Lemma. . . - continued

Sipser, 1.4, p-77

FIGURE 1.71

Example showing state q_{9} repeating when M reads s

■ State q_{9} is the one that repeats.

The Pumping Lemma for Regular Languages

$L=\{w \mid w$ starts and ends with $0,|w| \geq 2\}$
$L=0 \Sigma^{*} 0$

The Pumping Lemma for Regular Languages

$L=a(a a b)^{*} b a$

The Pumping Lemma. . . - continued

 Sipser, 1.4, p-77
figure 1.72
Example showing how the strings x, y, and z affect M

■ Piece x is the part of s appearing before q_{9}.
$■$ Piece y is the part between the two appearances of q_{9}.
\square Piece z is the remaining part of s, coming after the second occurrence of q_{9}.

The Pumping Lemma. . . - continued

Sipser, 1.4, p-77

Figure 1.72
Example showing how the strings x, y, and z affect M

- x takes M from the state q_{1} to q_{9}.
- y takes M from q_{9} back to q_{9}.
- z takes M from q_{9} to the accept state q_{13}.

The Pumping Lemma. . . - continued

Sipser, 1.4, p-77

Figure 1.72
Example showing how the strings x, y, and z affect M

- Suppose that we run M on input xyyz.

■ We know that x takes M from q_{1} to q_{9}.

The Pumping Lemma. . . - continued

Sipser, 1.4, p-77

Figure 1.72
Example showing how the strings x, y, and z affect M

■ Then the first y takes it from q_{9} back to q_{9}, as does the second y.
■ Then z takes it to q_{13}.

The Pumping Lemma. . . - continued

Sipser, 1.4, p-77

Figure 1.72
Example showing how the strings x, y, and z affect M

■ With q_{13} being an accept state, M accepts input $x y y z$.
■ Similarly, it will accept $x y^{i} z$ for any $i>0$.

The Pumping Lemma. . . - continued

Sipser, 1.4, p-77

Figure 1.72
Example showing how the strings x, y, and z affect M
\square For the case $i=0, x y^{i} z=x z$, which is accepted for similar reasons.

■ That establishes condition 1.

The Pumping Lemma. . . - continued

Sipser, 1.4, p-77

Figure 1.72
Example showing how the strings x, y, and z affect M

■ Checking condition 2 , we see that $|y|>0$, as it was the part of s that occurred between two different occurrences of state q_{9}.

The Pumping Lemma. . . - continued

Sipser, 1.4, p-77

figure 1.72
Example showing how the strings x, y, and z affect M

- In order to get condition 3, we make sure that q_{9} is the first repetition in the sequence.
- By the pigeonhole principle, the first $p+1$ states in the sequence must contain a repetition.
■ Therefore, $|x y| \leq p$.

The Pumping Lemma. . . - continued

Sipser, 1.4, p-77

PROOF

■ Let $M=\left(Q, \Sigma, \delta, q_{1}, F\right)$ be a DFA recognizing A and p be the number of states of M.
\square Let $s=s_{1} s_{2} \ldots s_{n}$ be a string in A of length n, where $n \geq p$.
$■$ Let $r_{1}, r_{2}, \ldots, r_{n+1}$ be the sequence of states that M enters while processing s.
■ So $r_{i+1}=\delta\left(r_{i}, s_{i}\right)$ for $1 \geq i \geq n$.
$■$ This sequence has length $n+1$, which is at least $p+1$.

The Pumping Lemma. . . - continued

Sipser, 1.4, p-77

■ Among the first $p+1$ elements in the sequence, two must be the same state.

- By the pigeonhole principle. We call the first of these r_{j} and the second r_{ℓ}.
■ Because r_{ℓ} occurs among the first $p+1$ places in a sequence starting at r_{1}, we have $\ell \geq p+1$.

The Pumping Lemma. . . - continued

Sipser, 1.4, p-77
\square Let $x=s_{1} \ldots s_{j-1}$.
■ $y=s_{j} \ldots s_{\ell-1}$.
■ $z=s_{\ell} \ldots s_{n}$.

The Pumping Lemma. . . - continued

Sipser, 1.4, p-77

\square Let $x=s_{1} \ldots s_{j-1}$.
■ $y=s_{j} \ldots s_{\ell-1}$.
$\square z=S_{\ell} \ldots S_{n}$.

- x takes M from r_{1} to r_{j}.
- y takes M from r_{j} to r_{j}.

■ z takes M from r_{j} to r_{n+1}, which is an accept state, M must accept $x y^{i} z$ for $i \geq 0$.

The Pumping Lemma. . . - continued

Sipser, 1.4, p-77

■ We know that $j \neq \ell$, so $|y|>0$.
$\square \ell \geq p+1$, so $|y|>0$.
$\square \ell \geq p+1$, so $|x y| \geq p$.

- Thus we have satisfied all conditions of the pumping lemma.

The Pumping Lemma. . . - continued Sipser, 1.4, p-80

- To use the pumping lemma to prove that a language B is not regular, first assume that B is regular in order to obtain a contradiction.
■ Then use the pumping lemma to guarantee the existence of a pumping length p such that all strings of length p or greater in B can be pumped.

The Pumping Lemma. . . - continued

Sipser, 1.4, p-80

■ Next, find a string s in B that has length p or greater but that cannot be pumped.

The Pumping Lemma. . . - continued Sipser, 1.4, p-80

■ Finally, demonstrate that s cannot be pumped by considering all ways of dividing s into x, y, and z (taking condition 3 of the pumping lemma into account if convenient).
$■$ For each such division, find a value i where $x y^{i} z \notin B$.

The Pumping Lemma. . . - continued Sipser, 1.4, p-80

■ This final step often involves grouping the various ways of dividing s into several cases and analyzing them individually.
■ The existence of s contradicts the pumping lemma if B were regular.
■ Hence B cannot be regular.

The Pumping Lemma. . . - continued

Sipser, 1.4, p-80

■ Finding s sometimes takes a bit of creative thinking.

- You may need to hunt through several candidates for s before you discover one that works.
■ Try members of B that seem to exhibit the "essence" of B 's nonregularity.

Example

Sipser, Example 1.73, p-80

- Let B be the language $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.

■ We use the pumping lemma to prove that B is not regular.

- The proof is by contradiction.

Example - continued
 Sipser, Example 1.73, p-80

- Assume to the contrary that B is regular.

■ Let p be the pumping length given by the pumping lemma.

Example - continued

\square Choose s to be the string $0^{p} 1^{p}$.
\square Because s is a member of B and s has length more than p, the pumping lemma guarantees that s can be split into three pieces, $s=x y z$.

- Where for any $i \geq 0$ the string $x y^{i} z$ is in B.

Example - continued

■ We consider three cases to show that this result is impossible.

1. The string y consists only of 0 s .

- In this case, the string xyyz has more 0s than 1s and so is not a member of B, violating condition 1 of the pumping lemma.
■ This case is a contradiction.

Example - continued
 Sipser, Example 1.73, p-80

■ We consider three cases to show that this result is impossible.
2. The string y consists only of 1 s .

■ This case also gives a contradiction.

Example - continued

■ We consider three cases to show that this result is impossible.
3. The string y consists of both 0 s and 1 s .

■ In this case, the string xyyz may have the same number of 0 s and 1s, but they will be out of order with some 1 s before Os.
■ Hence it is not a member of B, which is a contradiction.

Example - continued
 Sipser, Example 1.73, p-80

■ Thus a contradiction is unavoidable if we make the assumption that B is regular.
\square So B is not regular.

Example

Sipser, Example 1.74, p-80

$\square C=\{w \mid w$ has an equal number of 0 s and 1 s$\}$.
$■$ We use the pumping lemma to prove that C is not regular.

- The proof is by contradiction.

Example - continued

- Assume to the contrary that C is regular.
$■$ Let p be the pumping length given by the pumping lemma.
$■$ Let s be the string $0^{p} 1^{p}$.
\square With s being a member of C and having length more than p, the pumping lemma guarantees that s can be split into three pieces.
$\square s=x y z$, where for any $i \geq 0$ the string $x y^{i} z$ is in C.

Example - continued
 Sipser, Example 1.74, p-80

■ We would like to show that this outcome is impossible.

Example - continued

■ But wait, it is possible!
■ If we let x and z be the empty string and y be the string $0^{p} 1^{p}$, then $x y^{i} z$ always has an equal number of 0 s and 1 s and hence is in C.
\square So it seems that s can be pumped.

Example - continued

Sipser, Example 1.74, p-80

- Here condition 3 in the pumping lemma is useful.
\square It stipulates that when pumping s, it must be divided so that $|x y| \leq p$.
■ That restriction on the way that s may be divided makes it easier to show that the string $s=0^{p} 1^{p}$ we selected cannot be pumped.
■ If $|x y| \leq p$, then y must consist only of 0 s, so $x y y z \notin C$.
- Therefore, s cannot be pumped.

■ That gives us the desired contradiction.

Example

Sipser, Example 1.75, p-81

$\square F=\left\{w w \mid w \in\{0,1\}^{*}\right\}$.
$■$ We use the pumping lemma to prove that F is not regular.

Example - continued

- Assume to the contrary that F is regular.
\square Let p be the pumping length given by the pumping lemma.
$■$ Let s be the string $0^{p} 10 p^{1}$.
\square Because s is a member of F and s has length more than p, the pumping lemma guarantees that s can be split into three pieces, $s=x y z$, satisfying the three conditions of the lemma.

Example - continued
 Sipser, Example 1.75, p-81

■ We show that this outcome is impossible.
■ Condition 3 is once again crucial because without it we could pump s if we let x and z be the empty string.
■ With condition 3 the proof follows because y must consist only of 0 s, so $x y y z \notin F$.

Example - continued

■ Observe that we chose $s=0^{p} 10^{p} 1$ to be a string that exhibits the "essence" of the nonregularity of F, as opposed to, say, the string $0^{p} 0^{p}$.
\square Even though $0^{\rho} 0^{p}$ is a member of F, it fails to demonstrate a contradiction because it can be pumped.

Example

■ We demonstrate a nonregular unary language.
$\square D=\left\{1^{n^{2}} \mid n \geq 0\right\}$.

- We use the pumping lemma to prove that D is not regular.
\square The proof is by contradiction.

Example - continued
 Sipser, Example 1.76, p-82

- Assume to the contrary that D is regular.

■ Let p be the pumping length given by the pumping lemma.

Example - continued

$■$ Let s be the string $1^{p^{2}}$.

- Because s is a member of D and s has length at least p, the pumping lemma guarantees that s can be split into three pieces, $s=x y z$.
■ where for any $i \geq 0$ the string $x y^{i} z$ is in D.

Example - continued

■ We show that this outcome is impossible.
■ The sequence of perfect squares:

$$
0,1,4,9,16,25,36,49, \ldots
$$

\square Note the growing gap between successive members of this sequence.

- Large members of this sequence cannot be near each other.

Example - continued

$■$ Now consider the two strings $x y z$ and $x y^{2} z$.
■ These strings differ from each other by a single repetition of y.
■ Consequently their lengths differ by the length of y.
■ By condition 3 of the pumping lemma, $|x y| \leq p$ and thus $|y| \leq p$.

Example - continued

Sipser, Example 1.76, p-82

■ We have $|x y z|=p^{2}$ and so $\left|x y^{2} z\right| \leq p^{2}+p$.
\square But $p^{2}+p<p^{2}+2 p+1=(p+1) 2$.
■ Moreover, condition 2 implies that y is not the empty string and so $\left|x y^{2} z\right|>p^{2}$.
■ Therefore, the length of $x y^{2} z$ lies strictly between the consecutive perfect squares p^{2} and $(p+1) 2$.
■ Hence this length cannot be a perfect square itself.
\square So we arrive at the contradiction $x y^{2} z \notin D$ and conclude that D is not regular.

Example

Sipser, Example 1.77, p-82

$■$ Let E be the language $\left\{0^{i} 1^{j} \mid i>j\right\}$.
■ We use the pumping lemma to prove that E is not regular.
\square The proof is by contradiction.

Example - continued
 Sipser, Example 1.77, p-82

\square Assume that E is regular.
■ Let p be the pumping length for E given by the pumping lemma.

Example - continued
 Sipser, Example 1.77, p-82

- Let $s=0^{p+1} 1^{p}$.
- Then s can be split into $x y z$, satisfying the conditions of the pumping lemma.
■ By condition 3, y consists only of 0s.

Example - continued

- Let's examine the string $x y y z$ to see whether it can be in E.
- Adding an extra copy of y increases the number of 0 s .
- But, E contains all strings in 01 that have more 0 s than 1 s .
- So increasing the number of 0 s will still give a string in E.
- No contradiction occurs.

Example - continued
 Sipser, Example 1.77, p-82

■ We need to try something else.
$■$ The pumping lemma states that $x y^{i} z \in E$ even when $i=0$.

Example - continued

■ So let's consider the string $x y^{0} z=x z$.
\square Removing string y decreases the number of 0 s in s.

- Recall that s has just one more 0 than 1.

■ Therefore, $x z$ cannot have more $0 s$ than 1 s , so it cannot be a member of E.

■ Thus we obtain a contradiction.

Example

■ Let us show that the language $L_{p r}$ consisting of all strings of 1 's whose length is a prime is not a regular language.
\square Suppose it were.

- Then there would be a constant n satisfying the conditions of the pumping Lemma.

Example - continued

\square Consider some prime $p \geq n+2$.
■ There must be such a p, since there are an infinity of primes.

Example - continued

\square Let $w=1^{r}$.
■ By the pumping lemma, we can break $w=x y z$ such that $y \neq \epsilon$ and $|x y| \leq n$.
■ Let $|y|=m$.
■ Then $|x z|=p-m$.

Example - continued

■ Now consider the string $x y^{p-m} z$.
$■$ This must be in $L_{p r}$ by the pumping lemma, if $L_{p r}$ really is regular.
■ However,

$$
\begin{aligned}
\left|x y^{p-m} z\right| & =|x z|+(p-m)|y| \\
& =p-m+(p-m) m \\
& =(m+1)(p-m)
\end{aligned}
$$

\square It looks like $\left|x y^{p-m} z\right|$ is not a prime, since it has two factors $(m+1)$ and $(p-m)$.

Example - continued

■ However, we must check that neither of these factors are 1.
■ Since then $(m+1)(p-m)$ might be a prime after all.
■ But $m+1>1$, since $y \neq \epsilon$ tells us $m \geq 1$.

- Also, $p-m \geq 1$, since $p \geq n+2$ was chosen, and $m \leq n$ since

$$
m=|y| \leq|x y| \leq n
$$

- Thus, $p-m \geq 2$.

■ Again we have started by assuming the language in question was regular.
■ We derived a contradiction by showing that some string not in the language was required by the pumping lemma to be in the language.

- Thus, we conclude that $L_{p r}$ is not a regular language.

