
FORMAL DEFINITION

CSE-217: Theory of Computation
NON-DETERMINISM

Md Jakaria

Lecturer
Department of Computer Science and Engineering

Military Institute of Science and Technology

August 7, 2019

Md Jakaria MIST Theory of Computation August 7, 2019 1 / 31



FORMAL DEFINITION

FORMAL DEFINITION

Md Jakaria MIST Theory of Computation August 7, 2019 2 / 31



FORMAL DEFINITION

NON-DETERMINISM

Md Jakaria MIST Theory of Computation August 7, 2019 3 / 31



FORMAL DEFINITION

NON-DETERMINISM

Md Jakaria MIST Theory of Computation August 7, 2019 4 / 31



FORMAL DEFINITION

NON-DETERMINISM

Md Jakaria MIST Theory of Computation August 7, 2019 5 / 31



FORMAL DEFINITION

Equivalence of NFA and DFA

1 Deterministic and nondeterministic finite
automata recognize the same class of
languages.

2 Such equivalence is both surprising and
useful.
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FORMAL DEFINITION

Equivalence of NFA and DFA

3 It is surprising because NFAs appear to have
more power than DFAs, so we might expect
that NFAs recognize more languages.

4 It is useful because describing an NFA for a
given language sometimes is much easier
than describing a DFA for that language.

5 Say that two machines are equivalent if they
recognize the same language.

Md Jakaria MIST Theory of Computation August 7, 2019 7 / 31



FORMAL DEFINITION

Equivalence of NFA and DFA

Theorem

Every nondeterministic finite automaton
has an equivalent deterministic finite

automaton.
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FORMAL DEFINITION

Equivalence of NFA and DFA

PROOF IDEA
1 If a language is recognized by an NFA, then

we must show the existence of a DFA that
also recognizes it.

2 The idea is to convert the NFA into an
equivalent DFA that simulates the NFA.

3 Recall the “reader as automaton” strategy for
designing finite automata.
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FORMAL DEFINITION

Equivalence of NFA and DFA

4 How would you simulate the NFA if you were
pretending to be a DFA?

5 What do you need to keep track of as the
input string is processed?

6 In the examples of NFA’s, you kept track of
the various branches of the computation by
placing a finger on each state that could be
active at given points in the input.
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FORMAL DEFINITION

Equivalence of NFA and DFA

7 You updated the simulation by moving,
adding, and removing fingers according to
the way the NFA operates.

8 All you needed to keep track of was the set of
states having fingers on them.

9 If k is the number of states of the NFA, it has
2k subsets of states.
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FORMAL DEFINITION

Equivalence of NFA and DFA

10 Now we need to figure out which will be the
start state and accept states of the DFA.

11 What will be its transition function.

12 We can discuss this more easily after setting
up some formal notation.
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FORMAL DEFINITION

Equivalence of NFA and DFA

PROOF
Let N = (Q, Σ, δ, q0, F) be the NFA
recognizing some language A

We construct a DFA M = (Q′, Σ′, δ′, q′0, F ′)
recognizing A
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FORMAL DEFINITION

Equivalence of NFA and DFA

Before doing the full construction, lets first
consider the easier case wherein N has no ε
arrows.

Later we take the ε arrows into account.
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FORMAL DEFINITION

Equivalence of NFA and DFA

1 Q′ = P(Q).

Every state of M is a set of states of N.

Recall that P(Q) is the set of subsets of Q.
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FORMAL DEFINITION

Equivalence of NFA and DFA

2 For R ∈ Q′ and a ∈ Σ, let

δ′(R,a) = {q ∈ Q|q ∈ δ(r ,a) for some r ∈ R}

If R is a state of M, it is also a set of states
of N.

When M reads a symbol a in state R, it
shows where a takes each state in R.

Because each state may go to a set of
states, we take the union of all these sets
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FORMAL DEFINITION

Equivalence of NFA and DFA

3 q′0 = {q0}

M starts in the state corresponding to the
collection containing just the start state of
N.
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FORMAL DEFINITION

Equivalence of NFA and DFA

4 F ′ = {R ∈ Q′|R contains an accept state of
N}

The machine M accepts if one of the
possible states that N could be in at this
point is an accept state.
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FORMAL DEFINITION

Equivalence of NFA and DFA

Now we need to consider the ε arrows.

To do so, we set up an extra bit of notation.

For any state R of M, we define E(R) to be the
collection of states that can be reached from
members of R by going only along ε arrows,
including the members of R themselves
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FORMAL DEFINITION

Equivalence of NFA and DFA

Formally, for R ⊆ Q let
E(R) = {q|q can be reached from R by
traveling along 0 or more ε arrows}

Then we modify the transition function of M to
place additional fingers on all states that can
be reached by going along ε arrows after
every step.

Replacing δ(r ,a) by E(δ(r ,a)) achieves this
effect
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FORMAL DEFINITION

Equivalence of NFA and DFA

Thus δ′(R,a) = {q ∈ Q|q ∈ E(δ(r ,a)) for
some r ∈ R}

Additionally, we need to modify the start state
of M to move the fingers initially to all
possible states that can be reached from the
start state of N along the ε arrows.

Changing q′0 to be E({q0})) achieves this
effect
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FORMAL DEFINITION

Equivalence of NFA and DFA

We have now completed the construction of
the DFA M that simulates the NFA N.

The construction of M obviously works
correctly.

At every step in the computation of M on an
input, it clearly enters a state that
corresponds to the subset of states that N
could be in at that point.

Thus our proof is complete.
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FORMAL DEFINITION

Example
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FORMAL DEFINITION

Example-continued
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Example-continued
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Example-continued

Md Jakaria MIST Theory of Computation August 7, 2019 26 / 31



FORMAL DEFINITION

Example-2
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FORMAL DEFINITION

Example-2 continued
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FORMAL DEFINITION

Example-2 continued
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FORMAL DEFINITION

Exercise-1 Convert the following NFA to equivalent DFA
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FORMAL DEFINITION

Exercise-2 Convert the following NFA to equivalent DFA
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Example
Lewis and Papadimitriou, Example 2.2.3, p-70

We find the DFA equivalent to the nondeterministic automaton.
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Example — continued

N = (Q,Σ, δ,q0,F ) D = (Q′,Σ, δ′,q0
′,F ′)

Q′ is the power set of Q.

Since N has 5 states, D will have 25 = 32 states.
However, only a few of these states will be relevant to the
operation of D.
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Example — continued

N = (Q,Σ, δ,q0,F ) D = (Q′,Σ, δ′,q0
′,F ′)

Q′ is the power set of Q.

Namely, those states that can be reached from state q0
′ by

reading some input string.
Obviously, any state in D that is not reachable from q0

′ is
irrelevant to the operation of D.
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Example — continued

N = (Q,Σ, δ,q0,F ) D = (Q′,Σ, δ′,q0
′,F ′)

Q′ is the power set of Q.

We shall build this by lazy evaluation on the subsets.
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Example — continued

N = (Q,Σ, δ,q0,F ) D = (Q′,Σ, δ′,q0
′,F ′)

q0
′ = E(q0).

q0
′ = E(q0) = {q0,q1,q2,q3}.
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Example — continued

N = (Q,Σ, δ,q0,F ) D = (Q′,Σ, δ′,q0
′,F ′)

q0
′ = E(q0).

q0
′ = E(q0) = {q0,q1,q2,q3}.
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Example — continued

N = (Q,Σ, δ,q0,F ) D = (Q′,Σ, δ′,q0
′,F ′)

δ(q0,a) ∪ δ(q1,a) ∪ δ(q2,a) ∪ δ(q3,a) =
∅ ∪ {q0,q4} ∪ ∅ ∪ {q4} = {q0,q4}
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Example — continued

N = (Q,Σ, δ,q0,F ) D = (Q′,Σ, δ′,q0
′,F ′)

E(q0) = {q0,q1,q2,q3}, and E(q4) = {q3,q4}.
δ′(q0

′,a) = {q0,q1,q2,q3} ∪ {q3,q4} = {q0,q1,q2,q3,q4}.
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Example — continued

N = (Q,Σ, δ,q0,F ) D = (Q′,Σ, δ′,q0
′,F ′)

Similarly, δ′(q0
′,b) = {q2,q3,q4}.
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Example — continued

N = (Q,Σ, δ,q0,F ) D = (Q′,Σ, δ′,q0
′,F ′)

Similarly, δ′(q0
′,b) = {q2,q3,q4}.
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Example — continued

N = (Q,Σ, δ,q0,F ) D = (Q′,Σ, δ′,q0
′,F ′)

We repeat the calculation for the newly introduced states.
δ′({q0,q1,q2,q3,q4},a) = {q0,q1,q2,q3,q4}, and
δ′({q0,q1,q2,q3,q4},b) = {q2,q3,q4}.
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Example — continued

N = (Q,Σ, δ,q0,F ) D = (Q′,Σ, δ′,q0
′,F ′)

We repeat the calculation for the newly introduced states.
δ′({q0,q1,q2,q3,q4},a) = {q0,q1,q2,q3,q4}, and
δ′({q0,q1,q2,q3,q4},b) = {q2,q3,q4}.

Dr. Muhammad Masroor Ali CSE 211 (Theory of Computation) 101 / 183



Example — continued

N = (Q,Σ, δ,q0,F ) D = (Q′,Σ, δ′,q0
′,F ′)

We repeat the calculation for the newly introduced states.
δ′({q0,q1,q2,q3,q4},a) = {q0,q1,q2,q3,q4}, and
δ′({q0,q1,q2,q3,q4},b) = {q2,q3,q4}.
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Example — continued

N = (Q,Σ, δ,q0,F ) D = (Q′,Σ, δ′,q0
′,F ′)

Also we get.
δ′({q2,q3,q4},a) = {q3,q4}, and
δ′({q2,q3,q4},b) = {q3,q4}.
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Example — continued

N = (Q,Σ, δ,q0,F ) D = (Q′,Σ, δ′,q0
′,F ′)

Also we get.
δ′({q2,q3,q4},a) = {q3,q4}, and
δ′({q2,q3,q4},b) = {q3,q4}.
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Example — continued

N = (Q,Σ, δ,q0,F ) D = (Q′,Σ, δ′,q0
′,F ′)

Also we get.
δ′({q2,q3,q4},a) = {q3,q4}, and
δ′({q2,q3,q4},b) = {q3,q4}.
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Example — continued

N = (Q,Σ, δ,q0,F ) D = (Q′,Σ, δ′,q0
′,F ′)

Next we get.
δ′({q3,q4},a) = {q3,q4}, and
δ′({q3,q4},b) = ∅.
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Example — continued

N = (Q,Σ, δ,q0,F ) D = (Q′,Σ, δ′,q0
′,F ′)

Next we get.
δ′({q3,q4},a) = {q3,q4}, and
δ′({q3,q4},b) = ∅.
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Example — continued

N = (Q,Σ, δ,q0,F ) D = (Q′,Σ, δ′,q0
′,F ′)

Next we get.
δ′({q3,q4},a) = {q3,q4}, and
δ′({q3,q4},b) = ∅.
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Example — continued

N = (Q,Σ, δ,q0,F ) D = (Q′,Σ, δ′,q0
′,F ′)

Finally, we get.
δ′(∅,a) = δ′(∅,b) = ∅.
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Example — continued

N = (Q,Σ, δ,q0,F ) D = (Q′,Σ, δ′,q0
′,F ′)

Finally, we get.
δ′(∅,a) = δ′(∅,b) = ∅.
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Example — continued

N = (Q,Σ, δ,q0,F ) D = (Q′,Σ, δ′,q0
′,F ′)

Finally, we get.
δ′(∅,a) = δ′(∅,b) = ∅.
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Example — continued

N = (Q,Σ, δ,q0,F ) D = (Q′,Σ, δ′,q0
′,F ′)

F ′ is those sets of states that contain at least one accepting state of N.

q4 is the sole member of F .
The set of final states, contains each set of states of which
q4 is a member.
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Example — continued

N = (Q,Σ, δ,q0,F ) D = (Q′,Σ, δ′,q0
′,F ′)
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Example — continued

N = (Q,Σ, δ,q0,F ) D = (Q′,Σ, δ′,q0
′,F ′)

F ′ is those sets of states that contain at least one accepting state of N.

The three states {q0,q1,q2,q3,q4}, {q2,q3,q4}, and
{q3,q4} are final.
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Equivalence of NFAs AND DFAs
Sipser, 1.2, p-56
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Closure under the Regular Operations
Sipser, 1.2, p-59
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Closure under the Regular Operations
Sipser, 1.2, p-59
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L1 = {contains an odd number of a’s}
L2 = {aa}

N1

q01 q11

a

a

N2

q02 q12 q22
a a
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Equivalence of NFAs AND DFAs — continued
Sipser, 1.2, p-56

PROOF

Let N1 = (Q1,Σ, δ1,q1,F1) recognize A1.
And N2 = (Q2,Σ, δ2,q2,F2) recognize A2.
Construct N = (Q,Σ, δ,q0,F ) to recognize A1 ∪ A2.
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Equivalence of NFAs AND DFAs — continued
Sipser, 1.2, p-56

1. Q = {q0} ∪Q1 ∪Q2.
The states of N are all the states of N1 and N2, with the
addition of a new start state q0.
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Equivalence of NFAs AND DFAs — continued
Sipser, 1.2, p-56

2. The state q0 is the start state of N.
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Equivalence of NFAs AND DFAs — continued
Sipser, 1.2, p-56

3. The set of accept states F = F1 ∪ F2.
The accept states of N are all the accept states of N1 and
N2.
That way, N accepts if either N1 accepts or N2 accepts.
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Equivalence of NFAs AND DFAs — continued
Sipser, 1.2, p-56

4. Define δ so that for any q ∈ Q and any a ∈ Σε,

δ(q,a) =


δ1(q,a) q ∈ Q1

δ2(q,a) q ∈ Q2

{q1,q2} q = q0 and a = ε

∅ q = q0 and a 6= ε
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Closure under the Regular Operations
Sipser, 1.2, p-60
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Closure under the Regular Operations
Sipser, 1.2, p-60
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L1 = {contains an odd number of a’s}
L2 = {aa}

N1

q01 q11

a

a

N2

q02 q12 q22
a a
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Equivalence of NFAs AND DFAs — continued
Sipser, 1.2, p-61

PROOF

Let N1 = (Q1,Σ, δ1,q1,F1) recognize A1.
And N2 = (Q2,Σ, δ2,q2,F2) recognize A2.
Construct N = (Q,Σ, δ,q0,F ) to recognize A1 ◦ A2.
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Equivalence of NFAs AND DFAs — continued
Sipser, 1.2, p-61

1. Q = Q1 ∪Q2.
The states of N are all the states of N1 and N2.
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Equivalence of NFAs AND DFAs — continued
Sipser, 1.2, p-61

2. The state q1 is the start state of N.

Dr. Muhammad Masroor Ali CSE 211 (Theory of Computation) 116 / 183



Equivalence of NFAs AND DFAs — continued
Sipser, 1.2, p-61

3. The set of accept states F = F2.
The accept states F are the same as the accept states of
N2.

Dr. Muhammad Masroor Ali CSE 211 (Theory of Computation) 117 / 183



Equivalence of NFAs AND DFAs — continued
Sipser, 1.2, p-61

4. Define δ so that for any q ∈ Q and any a ∈ Σε,

δ(q,a) =


δ1(q,a) q ∈ Q1 and q 6∈ F1

δ1(q,a) q ∈ F1 and a 6= ε

δ1(q,a) ∪ {q2} q ∈ F1 and a = ε

δ2(q,a) q ∈ Q2
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Closure under the Regular Operations
Sipser, 1.2, p-62
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Closure under the Regular Operations
Sipser, 1.2, p-62

Dr. Muhammad Masroor Ali CSE 211 (Theory of Computation) 120 / 183



∑
= {a,b}, L3 = {ends in exactly one a at the end}

M3

q0

q2

q1 q3
ε

ε

a,b

b

a
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∑
= {a,b}, L3 = {ends in exactly one a at the end}

M3

q0

q2

q1 q3
ε

ε

a,b

b

a
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Equivalence of NFAs AND DFAs — continued
Sipser, 1.2, p-62

PROOF

Let N1 = (Q1,Σ, δ1,q1,F1) recognize A1.
Construct N = (Q,Σ, δ,q0,F ) to recognize A∗1.
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Equivalence of NFAs AND DFAs — continued
Sipser, 1.2, p-62

1. Q = {q0} ∪Q1.
The states of N are the states of N1 plus a new start state.
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Equivalence of NFAs AND DFAs — continued
Sipser, 1.2, p-62

2. The state q0 is the new start state.
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Equivalence of NFAs AND DFAs — continued
Sipser, 1.2, p-62

3. F = {q0} ∪ F1.
The accept states are the old accept states plus the new
start state.

Dr. Muhammad Masroor Ali CSE 211 (Theory of Computation) 125 / 183



Equivalence of NFAs AND DFAs — continued
Sipser, 1.2, p-62

4. Define δ so that for any q ∈ Q and any a ∈ Σε,

δ(q,a) =



δ1(q,a) q ∈ Q1 and q 6∈ F1

δ1(q,a) q ∈ F1 and a 6= ε

δ1(q,a) ∪ {q1} q ∈ F1 and a = ε

{q1} q ∈ q0 and a = ε

∅ q = q0 and a 6= ε
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