CSE-217: Theory of Computation NON-DETERMINISM

Md Jakaria

Lecturer
Department of Computer Science and Engineering
Military Institute of Science and Technology

August 7, 2019

FORMAL DEFINITION

1.37 DEFINITION

A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set of states,
- **2.** Σ is a finite alphabet,
- **3.** $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

NON-DETERMINISM

4/31

NON-DETERMINISM

The formal description of N_1 is $(Q, \Sigma, \delta, q_1, F)$, where

1.
$$Q = \{q_1, q_2, q_3, q_4\},\$$

2.
$$\Sigma = \{0,1\},$$

3. δ is given as

	0	1	arepsilon
q_1	$\{q_1\}$	$\{q_1,q_2\}$	Ø
q_2	$\{q_3\}$	Ø	$\{q_3\}$
q_3	Ø	$\{q_4\}$	Ø
q_4	$\{q_4\}$	$\{q_4\}$	$\emptyset,$

- **4.** q_1 is the start state, and
- 5. $F = \{q_4\}.$

5/31

Md Jakaria MIST

1 Deterministic and nondeterministic finite automata recognize the same class of languages.

2 Such equivalence is both surprising and useful.

- 3 It is surprising because NFAs appear to have more power than DFAs, so we might expect that NFAs recognize more languages.
- 4 It is useful because describing an NFA for a given language sometimes is much easier than describing a DFA for that language.
- 5 Say that two machines are equivalent if they recognize the same language.

Theorem

Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

PROOF IDEA

- 1 If a language is recognized by an NFA, then we must show the existence of a DFA that also recognizes it.
- 2 The idea is to convert the NFA into an equivalent DFA that simulates the NFA.
- 3 Recall the "reader as automaton" strategy for designing finite automata.

- 4 How would you simulate the NFA if you were pretending to be a DFA?
- 5 What do you need to keep track of as the input string is processed?
- 6 In the examples of NFA's, you kept track of the various branches of the computation by placing a finger on each state that could be active at given points in the input.

- 7 You updated the simulation by moving, adding, and removing fingers according to the way the NFA operates.
- 8 All you needed to keep track of was the set of states having fingers on them.
- 9 If k is the number of states of the NFA, it has 2^k subsets of states.

- 10 Now we need to figure out which will be the start state and accept states of the DFA.
- 11 What will be its transition function.
- 12 We can discuss this more easily after setting up some formal notation.

12 / 31

PROOF

- Let N = (Q, Σ , δ , q_0 , F) be the NFA recognizing some language A
- We construct a DFA M = $(Q', \Sigma', \delta', q'_0, F')$ recognizing A

13/31

- Before doing the full construction, lets first consider the easier case wherein N has no ϵ arrows.
- Later we take the ϵ arrows into account.

1
$$Q' = P(Q)$$
.

- Every state of M is a set of states of N.
- Recall that P(Q) is the set of subsets of Q.

2 For $R \in Q'$ and $a \in \Sigma$, let

$$\delta'(R, a) = \{q \in Q | q \in \delta(r, a) \text{ for some } r \in R\}$$

- If R is a state of M, it is also a set of states of N
- When M reads a symbol a in state R, it shows where a takes each state in R.
- Because each state may go to a set of states, we take the union of all these sets

Theory of Computation August 7, 2019

$$3 q_0' = \{q_0\}$$

M starts in the state corresponding to the collection containing just the start state of N.

17/31

- 4 $F' = \{R \in Q' | R \text{ contains an accept state of } N\}$
 - The machine M accepts if one of the possible states that N could be in at this point is an accept state.

- Now we need to consider the ∈ arrows.
- To do so, we set up an extra bit of notation.
- For any state R of M, we define E(R) to be the collection of states that can be reached from members of R by going only along ϵ arrows, including the members of R themselves

Theory of Computation August 7, 2019

- Formally, for $R \subseteq Q$ let $E(R) = \{q | q \text{ can be reached from R by traveling along 0 or more } \epsilon \text{ arrows} \}$
- Then we modify the transition function of M to place additional fingers on all states that can be reached by going along ϵ arrows after every step.
- Replacing $\delta(r, a)$ by $E(\delta(r, a))$ achieves this effect

- Thus $\delta'(R, a) = \{q \in Q | q \in E(\delta(r, a)) \text{ for some } r \in R\}$
- Additionally, we need to modify the start state of M to move the fingers initially to all possible states that can be reached from the start state of N along the ϵ arrows.
- Changing q'_0 to be $E(\{q_0\})$ achieves this effect

Md Jakaria MIST Theory of Computation

- We have now completed the construction of the DFA M that simulates the NFA N.
- The construction of M obviously works correctly.
- At every step in the computation of M on an input, it clearly enters a state that corresponds to the subset of states that N could be in at that point.
- Thus our proof is complete.

Example

An NFA accepting all strings that end in 01

23 / 31

Md Jakaria MIST Theory of C

Example-continued

Figure 2.12: The complete subset construction from Fig. 2.9

24/31

Md Jakaria MIST Theory of Computation

Example-continued

Renaming the states

Example-continued

The DFA constructed from the NFA

Md Jakaria MIST

Example-2

Md Jakaria

MIST

Example-2 continued

MIST Theory of Computation

Example-2 continued

Md Jakaria

MIST

Theory of Computation

Exercise-1 Convert the following NFA to equivalent DFA

Exercise-2 Convert the following NFA to equivalent DFA

31/31

Example

Lewis and Papadimitriou, Example 2.2.3, p-70

We find the DFA equivalent to the nondeterministic automaton.

$$N = (Q, \Sigma, \delta, q_0, F)$$
 $D = (Q', \Sigma, \delta', q_0', F')$

 \square Q' is the power set of Q.

- Since *N* has 5 states, *D* will have $2^5 = 32$ states.
- However, only a few of these states will be relevant to the operation of *D*.

$$N = (Q, \Sigma, \delta, q_0, F)$$
 $D = (Q', \Sigma, \delta', q_0', F')$

 \square Q' is the power set of Q.

- Namely, those states that can be reached from state q_0' by reading some input string.
- Obviously, any state in D that is not reachable from q_0' is irrelevant to the operation of D.

$$N = (Q, \Sigma, \delta, q_0, F)$$
 $D = (Q', \Sigma, \delta', q_0', F')$

 \blacksquare Q' is the power set of Q.

■ We shall build this by *lazy evaluation* on the subsets.

$$N = (Q, \Sigma, \delta, q_0, F)$$
 $D = (Q', \Sigma, \delta', q_0', F')$

 $q_0' = E(q_0).$

$$N = (Q, \Sigma, \delta, q_0, F)$$
 $D = (Q', \Sigma, \delta', q_0', F')$

 $q_0' = E(q_0).$

$$> (q_0, q_1, q_2, q_3)$$

$$N = (Q, \Sigma, \delta, q_0, F)$$
 $D = (Q', \Sigma, \delta', q_0', F')$

■ $\delta(q_0, a) \cup \delta(q_1, a) \cup \delta(q_2, a) \cup \delta(q_3, a) = \emptyset \cup \{q_0, q_4\} \cup \emptyset \cup \{q_4\} = \{q_0, q_4\}$

$$N = (Q, \Sigma, \delta, q_0, F)$$
 $D = (Q', \Sigma, \delta', q_0', F')$

- \blacksquare $E(q_0) = \{q_0, q_1, q_2, q_3\}, \text{ and } E(q_4) = \{q_3, q_4\}.$

$$N = (Q, \Sigma, \delta, q_0, F)$$
 $D = (Q', \Sigma, \delta', q_0', F')$

■ Similarly, $\delta'(q_0', b) = \{q_2, q_3, q_4\}.$

$$N = (Q, \Sigma, \delta, q_0, F)$$
 $D = (Q', \Sigma, \delta', q_0', F')$

■ Similarly, $\delta'(q_0', b) = \{q_2, q_3, q_4\}.$

$$N = (Q, \Sigma, \delta, q_0, F)$$
 $D = (Q', \Sigma, \delta', q_0', F')$

- We repeat the calculation for the newly introduced states.
- $\delta'(\{q_0, q_1, q_2, q_3, q_4\}, a) = \{q_0, q_1, q_2, q_3, q_4\}, \text{ and }$
- $\delta'(\{q_0,q_1,q_2,q_3,q_4\},b) = \{q_2,q_3,q_4\}.$

$$N = (Q, \Sigma, \delta, q_0, F)$$
 $D = (Q', \Sigma, \delta', q_0', F')$

- We repeat the calculation for the newly introduced states.
- $\delta'(\{q_0, q_1, q_2, q_3, q_4\}, a) = \{q_0, q_1, q_2, q_3, q_4\}, \text{ and }$
- $\delta'(\{q_0,q_1,q_2,q_3,q_4\},b) = \{q_2,q_3,q_4\}.$

$$N = (Q, \Sigma, \delta, q_0, F)$$
 $D = (Q', \Sigma, \delta', q_0', F')$

- We repeat the calculation for the newly introduced states.
- $\delta'(\{q_0, q_1, q_2, q_3, q_4\}, a) = \{q_0, q_1, q_2, q_3, q_4\}, \text{ and }$
- $\delta'(\{q_0,q_1,q_2,q_3,q_4\},b) = \{q_2,q_3,q_4\}.$

$$N = (Q, \Sigma, \delta, q_0, F)$$
 $D = (Q', \Sigma, \delta', q_0', F')$

- Also we get.
- $\delta'(\{q_2, q_3, q_4\}, a) = \{q_3, q_4\}, \text{ and }$
- $\delta'(\{q_2,q_3,q_4\},b) = \{q_3,q_4\}.$

$$N = (Q, \Sigma, \delta, q_0, F)$$
 $D = (Q', \Sigma, \delta', q_0', F')$

- Also we get.
- $\delta'(\{q_2, q_3, q_4\}, a) = \{q_3, q_4\}, \text{ and }$

$$N = (Q, \Sigma, \delta, q_0, F)$$
 $D = (Q', \Sigma, \delta', q_0', F')$

- Also we get.
- $\delta'(\{q_2, q_3, q_4\}, a) = \{q_3, q_4\}, \text{ and }$
- $\delta'(\{q_2,q_3,q_4\},b) = \{q_3,q_4\}.$

$$N = (Q, \Sigma, \delta, q_0, F)$$
 $D = (Q', \Sigma, \delta', q_0', F')$

- Next we get.
- $\delta'(\{q_3, q_4\}, a) = \{q_3, q_4\}, \text{ and }$
- $\delta'(\{q_3,q_4\},b)=\emptyset.$

$$N = (Q, \Sigma, \delta, q_0, F)$$
 $D = (Q', \Sigma, \delta', q_0', F')$

- Next we get.
- $\delta'(\{q_3, q_4\}, a) = \{q_3, q_4\}, \text{ and }$

$$N = (Q, \Sigma, \delta, q_0, F)$$
 $D = (Q', \Sigma, \delta', q_0', F')$

- Next we get.
- $\delta'(\{q_3, q_4\}, a) = \{q_3, q_4\}, \text{ and }$
- $\delta'(\{q_3,q_4\},b)=\emptyset.$

$$N = (Q, \Sigma, \delta, q_0, F)$$
 $D = (Q', \Sigma, \delta', q_0', F')$

- Finally, we get.
- $\delta'(\emptyset, a) = \delta'(\emptyset, b) = \emptyset.$

$$N = (Q, \Sigma, \delta, q_0, F)$$
 $D = (Q', \Sigma, \delta', q_0', F')$

- Finally, we get.
- $\delta'(\emptyset, a) = \delta'(\emptyset, b) = \emptyset.$

$$N = (Q, \Sigma, \delta, q_0, F)$$
 $D = (Q', \Sigma, \delta', q_0', F')$

- Finally, we get.
- $\delta'(\emptyset, a) = \delta'(\emptyset, b) = \emptyset.$

$$N = (Q, \Sigma, \delta, q_0, F)$$
 $D = (Q', \Sigma, \delta', q_0', F')$

 \blacksquare F' is those sets of states that contain at least one accepting state of N.

- \blacksquare q_4 is the sole member of F.
- The set of final states, contains each set of states of which q_4 is a member.

$$N = (Q, \Sigma, \delta, q_0, F)$$
 $D = (Q', \Sigma, \delta', q_0', F')$

 \blacksquare F' is those sets of states that contain at least one accepting state of N.

- \blacksquare q_4 is the sole member of F.
- The set of final states, contains each set of states of which q_4 is a member.

$$N = (Q, \Sigma, \delta, q_0, F)$$
 $D = (Q', \Sigma, \delta', q_0', F')$

 \blacksquare F' is those sets of states that contain at least one accepting state of N.

■ The three states $\{q_0, q_1, q_2, q_3, q_4\}$, $\{q_2, q_3, q_4\}$, and $\{q_3, q_4\}$ are final.

Equivalence of NFAs AND DFAs

Sipser, 1.2, p-56

COROLLARY	1.40	
-----------	------	--

A language is regular if and only if some nondeterministic finite automaton recognizes it.

Closure under the Regular Operations

Sipser, 1.2, p-59

THEOREM 1.45	
---------------------	--

The class of regular languages is closed under the union operation.

Closure under the Regular Operations

Sipser, 1.2, p-59

FIGURE 1.46 Construction of an NFA N to recognize $A_1 \cup A_2$

■ L₁ = {contains an odd number of *a*'s} L₂ = {*aa*}

Sipser, 1.2, p-56

PROOF

- Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 .
- And $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 .
- Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$.

Sipser, 1.2, p-56

- 1. $Q = \{q_0\} \cup Q_1 \cup Q_2$.
- The states of N are all the states of N_1 and N_2 , with the addition of a new start state q_0 .

Sipser, 1.2, p-56

2. The state q_0 is the start state of N.

CSE 211 (Theory of Computation)

Sipser, 1.2, p-56

- 3. The set of accept states $F = F_1 \cup F_2$.
 - The accept states of N are all the accept states of N_1 and N_2 .
 - That way, N accepts if either N_1 accepts or N_2 accepts.

Sipser, 1.2, p-56

4. Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\epsilon}$,

$$\delta(q,a) = egin{cases} \delta_1(q,a) & q \in Q_1 \ \delta_2(q,a) & q \in Q_2 \ \{q_1,q_2\} & q = q_0 ext{ and } a = \epsilon \ \emptyset & q = q_0 ext{ and } a
eq \epsilon \end{cases}$$

Closure under the Regular Operations

Sipser, 1.2, p-60

THEOREM 1.47	
---------------------	--

The class of regular languages is closed under the concatenation operation.

Closure under the Regular Operations

Sipser, 1.2, p-60

FIGURE **1.48** Construction of N to recognize $A_1 \circ A_2$

■ L₁ = {contains an odd number of *a*'s} L₂ = {*aa*}

Sipser, 1.2, p-61

PROOF

- Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 .
- And $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 .
- Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \circ A_2$.

Sipser, 1.2, p-61

- 1. $Q = Q_1 \cup Q_2$.
- The states of N are all the states of N_1 and N_2 .

Sipser, 1.2, p-61

2. The state q_1 is the start state of N.

CSE 211 (Theory of Computation)

Sipser, 1.2, p-61

- 3. The set of accept states $F = F_2$.
- The accept states *F* are the same as the accept states of *N*₂.

Sipser, 1.2, p-61

4. Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\epsilon}$,

$$\delta(q,a) = egin{cases} \delta_1(q,a) & q \in Q_1 \text{ and } q
otin F_1 \ \delta_1(q,a) & q \in F_1 \text{ and } a
otin \epsilon \epsilon \ \delta_1(q,a) \cup \{q_2\} & q \in F_1 \text{ and } a = \epsilon \ \delta_2(q,a) & q \in Q_2 \end{cases}$$

Closure under the Regular Operations

Sipser, 1.2, p-62

THEOREM 1.49	
---------------------	--

The class of regular languages is closed under the star operation.

Closure under the Regular Operations

Sipser, 1.2, p-62

FIGURE **1.50** Construction of N to recognize A^*

 \blacksquare $\Sigma = \{a, b\}, L_3 = \{\text{ends in exactly one } a \text{ at the end}\}$

 \blacksquare $\Sigma = \{a, b\}, L_3 = \{\text{ends in exactly one } a \text{ at the end}\}$

Sipser, 1.2, p-62

PROOF

- Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 .
- Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^* .

Sipser, 1.2, p-62

1.
$$Q = \{q_0\} \cup Q_1$$
.

■ The states of N are the states of N_1 plus a new start state.

Sipser, 1.2, p-62

2. The state q_0 is the new start state.

Sipser, 1.2, p-62

- 3. $F = \{q_0\} \cup F_1$.
- The accept states are the old accept states plus the new start state.

Sipser, 1.2, p-62

4. Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\epsilon}$,

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q,a) & q \in F_1 \text{ and } a \neq \epsilon \end{cases}$$
$$\delta_1(q,a) \cup \{q_1\} & q \in F_1 \text{ and } a = \epsilon$$
$$\{q_1\} & q \in q_0 \text{ and } a = \epsilon$$
$$\emptyset & q = q_0 \text{ and } a \neq \epsilon \end{cases}$$

