Theory of Computation REGULAR OPERATIONS

Md. Jakaria

Lecturer
Department of Computer Science & Engineering
Military Institute of Science and Technology

July 23, 2019

1/14

- In arithmetic, the basic objects are numbers and the tools are operations such as + and x.
- In TOC, the objects are languages and tool includes operations specifically designed for them.
- We define three operations on languages, called the regular operations.

DEFINITION 1.23

Let A and B be languages. We define the regular operations *union*, concatenation, and star as follows:

- Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}.$
- Concatenation: $A \circ B = \{xy | x \in A \text{ and } y \in B\}.$
- Star: $A^* = \{x_1 x_2 \dots x_k | k > 0 \text{ and each } x_i \in A\}.$

- The union operation simply takes all the strings in both A and B and lumps them together into one language.
- The concatenation operation attaches a string from A in front of a string from B in all possible ways to get the strings in the new language.
- The star operation is a unary operation instead of a binary operation. It works by attaching any number of strings in A together to get a string in the new language.

EXAMPLE 1.24

Let the alphabet Σ be the standard 26 letters $\{a, b, ..., z\}$. If $A = \{good, bad\}$ and $B = \{boy, girl\}$, then

 $A \cup B = \{\texttt{good}, \texttt{bad}, \texttt{boy}, \texttt{girl}\},$

 $A \circ B = \{\texttt{goodboy}, \texttt{goodgirl}, \texttt{badboy}, \texttt{badgirl}\}, \texttt{and}$

 $A^* = \{\varepsilon, \mathsf{good}, \mathsf{bad}, \mathsf{goodgood}, \mathsf{goodbad}, \mathsf{badgood}, \mathsf{badbad}, \\ \mathsf{goodgoodgood}, \mathsf{goodgoodbad}, \mathsf{goodbadgood}, \mathsf{goodbadbad}, \dots\}.$

THEOREM **1.25**

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

PROOF IDEA We have regular languages A_1 and A_2 and want to show that $A_1 \cup A_2$ also is regular. Because A_1 and A_2 are regular, we know that some finite automaton M_1 recognizes A_1 and some finite automaton M_2 recognizes A_2 . To prove that $A_1 \cup A_2$ is regular, we demonstrate a finite automaton, call it M, that recognizes $A_1 \cup A_2$.

This is a proof by construction. We construct M from M_1 and M_2 . Machine M must accept its input exactly when either M_1 or M_2 would accept it in order to recognize the union language. It works by *simulating* both M_1 and M_2 and accepting if either of the simulations accept.

PROOF

Let M_1 recognize A_1 , where $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, and M_2 recognize A_2 , where $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$.

Construct M to recognize $A_1 \cup A_2$, where $M = (Q, \Sigma, \delta, q_0, F)$.

1. $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\}.$ This set is the *Cartesian product* of sets Q_1 and Q_2 and is written $Q_1 \times Q_2$. It is the set of all pairs of states, the first from Q_1 and the second from Q_2 .

- **1.** $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\}.$ This set is the *Cartesian product* of sets Q_1 and Q_2 and is written $Q_1 \times Q_2$. It is the set of all pairs of states, the first from Q_1 and the second from Q_2 .
- 2. Σ , the alphabet, is the same as in M_1 and M_2 . In this theorem and in all subsequent similar theorems, we assume for simplicity that both M_1 and M_2 have the same input alphabet Σ . The theorem remains true if they have different alphabets, Σ_1 and Σ_2 . We would then modify the proof to let $\Sigma = \Sigma_1 \cup \Sigma_2$.

MIST

3. δ , the transition function, is defined as follows. For each $(r_1, r_2) \in Q$ and each $a \in \Sigma$, let

$$\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)).$$

Hence δ gets a state of M (which actually is a pair of states from M_1 and M_2), together with an input symbol, and returns M's next state.

3. δ , the transition function, is defined as follows. For each $(r_1, r_2) \in Q$ and each $a \in \Sigma$, let

$$\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)).$$

Hence δ gets a state of M (which actually is a pair of states from M_1 and M_2), together with an input symbol, and returns M's next state.

4. q_0 is the pair (q_1, q_2) .

5. F is the set of pairs in which either member is an accept state of M_1 or M_2 . We can write it as

$$F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}.$$

This expression is the same as $F = (F_1 \times Q_2) \cup (Q_1 \times F_2)$. (Note that it is *not* the same as $F = F_1 \times F_2$. What would that give us instead?³)

Md. Jakaria MIST Presentation Template July 23, 2019

1.26 THEOREM

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

This is the place where non-determinism starts!