CSE-217: Theory of Computation REGULAR LANGUAGES

Md Jakaria

Lecturer Department of Computer Science and Engineering Military Institute of Science and Technology

July 18, 2019

Design is a creative process!

Md Jakaria

MIST

Put yourself in the place of the machine you are trying to design.

Md Jakaria

MIST

Put yourself in the place of the machine you are trying to design.

Figure out what you need to remember about the string.

- 1 Suppose that the alphabet is {0,1} and that the language consists of all strings with an odd number of 1s.
- 2 You want to construct a finite automaton E_1 to recognize this language.

Example - 1 Sipser, 1.1, p-42

FIGURE 1.18 The two states q_{even} and q_{odd}

Example - 1 Sipser, 1.1, p-42

FIGURE 1.19 Transitions telling how the possibilities rearrange

Example - 1 Sipser, 1.1, p-43

FIGURE **1.20** Adding the start and accept states

- 1 Design a finite automaton E_2 to recognize the regular language of all strings that contain the string 001 as a substring.
- 2 For example, 0010, 1001, 001, and 11111110011111 are all in the language, but 11 and 0000 are not.

Example - 2 Sipser, 1.1, p-44

1 Let us formally specify a DFA that accepts all and only the strings of 0's and 1's that have the sequence 01 somewhere in the string.

Figure 2.4: The transition diagram for the DFA accepting all strings with a substring 01

- We can write this language L as: {w | w is of the form x01y for some strings x and y consisting of 0's and 1's only.}
- Another equivalent description, using parameters x and y to the left of the vertical bar, is: {x01y | x and y are any strings of 0's and 1's}

1 Design a DFA to accept the language L = {w | w has both an even number of 0's and an even number of 1's}

Example - 4 Ullman, 2.1, Fig-2.6

Figure 2.6: Transition diagram for the DFA of Example 2.4

Example - 4 Ullman, 2.1, Fig-2.6

Example - 5 Lewis and Papadimitriou, Example 2.1.2

Example 5

1 Design a deterministic finite automaton M that accepts the language $L(M) = \{ w \in \{a,b\}^* : w \text{ does not contain three consecutive b's} \}$

Figure 2-3

Example - 6 Lewis and Papadimitriou, Example 2.1.2

Example 6

1 Design a DFA that accepts binary numbers that are divisible by three.

Example - 6 Ullman, 2.1, Fig-2.6

1 Draw a DFA for the language accepting strings starting with 'ab' over input alphabets $\Sigma = \{a, b\}$

Example - 7 Ullman, 2.1, Fig-2.6

DFA

1 Construct a DFA that accepts a language L over input alphabets $\Sigma = \{a, b\}$ such that L is the set of all strings starting with 'aa' or 'bb'.

1 Design FA with $\Sigma = \{0, 1\}$ accepts the set of all strings with three consecutive 0's.

1 Design a FA with $\Sigma = \{0, 1\}$ accepts the strings with an even number of 0's followed by single 1.

1 Design a DFA over $w \in \{a,b\}^*$ such that number of a = 2 and there is no restriction over length of b.

 Design a DFA over w ∈ {a,b}* such that number of a is less or equals to 2 and there is no restriction over length of b.

 Design a DFA over w ∈ {a,b}* such that number of a is greater or equals to 2 and there is no restriction over length of b.

1 Design a DFA over $w \in \{a,b\}^*$ in which set of all strings can be accepted which start with a.

1 Design a DFA over $w \in \{a,b\}^*$ in which every 'a' should followed by 'bb'

1 Design a DFA such that: $L = \{a^n b^m \mid n,m \ge 1\}$ Given: Input alphabet, $\Sigma = \{a, b\}$ Language L = {ab, aab, aaab, abbb, aabb, abbbb, ...}

Ar Parina Boddo Hoyran Lage

