CSE-217: Theory of Computation REGULAR LANGUAGES

Lec Md Jakaria

Department of Computer Science and Engineering Military Institute of Science and Technology

June 29, 2019

Computational Model

What is a computer?

Lec Md Jakaria

Computational Model

What is a computer?

Computational Model: An idealized computer

Computational Model

What is a computer?

Computational Model: An idealized computer

finite state machine or finite automaton.

Automata

Finite automata are good models for computers with an extremely limited amount of memory.

Finite automata are good models for computers with an extremely limited amount of memory.

What can a computer do with such a small memory?

Example - 1 Hopcroft, Motowani and Ullman: Figure 1.1

Figure: A finite automaton modeling an on/off switch

Example - 2

Michael Sipser: Figure 1.1

Figure: Top view of an automatic door

Example - 2 Michael Sipser: Figure 1.2

Figure: State diagram for an automatic door controller

Example - 3 Michael Sipser: Figure 1.4

 q_1 q_2 q_3 q_3

Figure: A finite automaton that has three states

State diagram		
StatesStart StateAccept StateTransitions		

Automata

Automata

- Finite Automata
- Infinite Automata

Automata

Automata

- Finite Automata
- Infinite Automata

Finite Automata

- Deterministic
- Non-deterministic

Automata	Finite Automata	
	•00000000	

Formal Definition

DEFINITION 1.5

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

1. *Q* is a finite set called the *states*,

- **2.** Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,¹
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the *set of accept states*.²

Formal Definition

Language

- *A* is the set of all strings that machine *M* accepts.
- We say that A is the language of machine M.
- Write L(M) = A.
- We say that *M* recognizes *A* or that *M* accepts *A*.

Definition of Computation

Example - 3 continued

Michael Sipser: Figure 1.4

Figure: A finite automaton called M_1 that has three states

Example - 3 continued

We can describe M_1 formally by writing $M_1 = (Q, \Sigma, \delta, q_1, F)$, where

1.
$$Q = \{q_1, q_2, q_3\},\$$

2.
$$\Sigma = \{0,1\},\$$

3. δ is described as

$$\begin{array}{c|cccc} 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ q_2 & q_3 & q_2 \\ q_3 & q_2 & q_2, \end{array}$$

4. q₁ is the start state, and
5. F = {q₂}.

Example - 3 continued

 $A = \{w | w \text{ contains at least one 1 and}$ an even number of 0s follow the last 1}.

Then $L(M_1) = A$, or equivalently, M_1 recognizes A.

Example - 4 Michael Sipser: Figure 1.9

Example - 5 Michael Sipser: Figure 1.10

Example - 5 Michael Sipser: Figure 1.11

Example - 6 Michael Sipser: Figure 1.12

Definition of Computation

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton
- let $w = w_1 w_2 \dots w_n$ be a string
- each w_i is a member of the alphabet Σ .
- Then *M* accepts *w* if a sequence of states r_0, r_1, \ldots, r_n in *Q* exists with three conditions:

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton
- let $w = w_1 w_2 \dots w_n$ be a string
- each w_i is a member of the alphabet Σ .
- Then *M* accepts *w* if a sequence of states r_0, r_1, \ldots, r_n in *Q* exists with three conditions:

1 $r_0 = q_0$, 2 $\delta(r_i, w_{i+1}) = r_{i+1}$ for i = 0, ..., n1, and 3 $r_n \in F$.

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton
- let $w = w_1 w_2 \dots w_n$ be a string
- each w_i is a member of the alphabet Σ .
- Then *M* accepts *w* if a sequence of states r_0, r_1, \ldots, r_n in *Q* exists with three conditions:

1 $r_0 = q_0$, 2 $\delta(r_i, w_{i+1}) = r_{i+1}$ for i = 0, ..., n1, and 3 $r_n \in F$.

M recognizes language *A* if $A = \{w | M \text{ accepts } w\}$

DEFINITION 1.16

A language is called a *regular language* if some finite automaton recognizes it.

Example - 6 Michael Sipser: Figure 1.12

Example - 6 Michael Sipser: Figure 1.12

 $L(M_5) = \{w | \text{ the sum of the symbols in } w \text{ is 0 modulo 3,} \\ \text{except that } \langle \text{RESET} \rangle \text{ resets the count to 0} \}.$

Thank You

