
CSE-101: Discrete Mathematics
Chapter-9: Relations

Lec Md Jakaria

Dept of CSE, MIST



Chapter Summary

• Relations and Their Properties

• n-ary Relations and Their Applications (not currently 
included in overheads)

• Representing Relations

• Closures of Relations (not currently included in  
overheads)

• Equivalence Relations

• Partial Orderings



Relations and Their Properties
Section 9.1

• Relations and Functions

• Properties of Relations
• Reflexive Relations

• Symmetric and Antisymmetric Relations

• Transitive Relations

• Combining Relations



Binary Relations

Definition: A binary relation R from a set A to a set 
B is a subset R ⊆ A × B.

Example:
• Let A = {0,1,2} and B = {a,b} 

• {(0, a), (0, b), (1,a) , (2, b)} is a relation from A to B. 

• We can represent relations from a set A to a set B
graphically or using a table:

Relations are more general than 
functions. A function is a relation 
where exactly one element of B is 
related to each element of A.



Binary Relation on a Set

Definition: A binary relation R on a set A is a subset of 
A × A or a relation from A to A.

Example:
• Suppose that A = {a,b,c}. Then R = {(a,a),(a,b), (a,c)} is a 

relation on A. 

• Let  A = {1, 2, 3, 4}. The ordered pairs in the relation                  
R = {(a,b) | a divides b} are

(1,1), (1, 2), (1,3), (1, 4), (2, 2), (2, 4), (3, 3), and  (4, 4).



Binary Relation on a Set (cont.)

Question: How many relations are there on a set A?

Solution: Because a relation on A is the same thing as a
subset of A ⨉ A, we count the subsets of A × A. Since
A × A has n2 elements when A has n elements, and a set
with m elements has 2m subsets, there are subsets of
A × A. Therefore, there are relations on a set A.

2| |2 A

2| |2 A



Binary Relations on a Set (cont.)

Example: Consider these relations on the set of integers:

R1 = {(a,b) | a ≤ b}, R4 = {(a,b) | a = b},

R2 = {(a,b) | a > b}, R5 = {(a,b) | a = b + 1},

R3 = {(a,b) | a = b  or a = −b},        R6 = {(a,b) | a + b ≤ 3}.

Which of these relations contain each of the pairs:    

(1,1), (1, 2), (2, 1), (1, −1), and (2, 2)?

Solution: Checking the conditions that define each relation, we see that 
the pair (1,1) is in R1, R3, R4 , and R6: (1,2) is in R1 and R6: (2,1) is in R2, 
R5, and R6: (1, −1) is in R2, R3, and R6 : (2,2) is in R1, R3, and R4.

Note that these relations are on an infinite set and each of these relations is an infinite 
set.



Reflexive Relations
Definition: R is reflexive iff (a,a) ∊ R for every element       
a ∊ A. Written symbolically, R is reflexive if and only if 

∀x[x∊U ⟶ (x,x) ∊ R]

Example: The following relations  on the integers are 
reflexive:

R1 = {(a,b) | a ≤ b},

R3 = {(a,b) | a = b  or a = −b},
R4 = {(a,b) | a = b}.

The following relations are not reflexive:
R2 = {(a,b) | a > b}  (note that  3 ≯ 3),
R5 = {(a,b) | a = b + 1} (note that  3 ≠3 + 1),
R6 = {(a,b) | a + b ≤ 3}  (note that 4  + 4 ≰ 3).

If A = ∅ then the empty relation is 
reflexive vacuously. That is the empty 
relation on an empty set is reflexive! 



Symmetric Relations
Definition: R is symmetric iff (b,a) ∊ R whenever (a,b)
∊ R for all a,b ∊ A. Written symbolically, R is 
symmetric if and only if ∀x∀y [(x,y) ∊R ⟶ (y,x) ∊ R]

Example: The following relations  on the integers are 
symmetric:

R3 = {(a,b) | a = b  or a = −b},

R4 = {(a,b) | a = b},
R6 = {(a,b) | a + b ≤ 3}.

The following are not symmetric:
R1 = {(a,b) | a ≤ b} (note that 3 ≤ 4, but 4 ≰ 3),
R2 = {(a,b) | a > b}  (note that 4 > 3, but 3 ≯ 4),
R5 = {(a,b) | a = b + 1} (note that 4 = 3 + 1, but 3 ≠4 + 1).



Antisymmetric Relations
Definition:A relation R on a set A such that for all a,b ∊ A if 
(a,b) ∊ R and (b,a) ∊ R, then a = b  is called antisymmetric. 
Written symbolically, R is antisymmetric if and only if 

∀x∀y [(x,y) ∊R ∧ (y,x) ∊ R ⟶ x = y]

• Example: The following relations  on the integers are 
antisymmetric:

R1 = {(a,b) | a ≤ b},

R2 = {(a,b) | a > b},

R4 = {(a,b) | a = b},

R5 = {(a,b) | a = b + 1}.

The following relations are not antisymmetric:

R3 = {(a,b) | a = b  or a = −b}

(note that both (1,−1) and (−1,1) belong to R3),

R6 = {(a,b) | a + b ≤ 3} (note that both (1,2) and (2,1) belong to R6).

For any integer, if a a ≤ b and a
≤ b , then a = b. 



Transitive Relations
Definition: A relation R on a set A is called transitive if 
whenever (a,b) ∊ R and (b,c) ∊ R, then (a,c) ∊ R, for all a,b,c
∊ A. Written symbolically, R is transitive if and only if 

∀x∀y ∀z[(x,y) ∊R ∧ (y,z) ∊ R ⟶ (x,z) ∊ R ]

• Example: The following relations  on the integers are 
transitive:

R1 = {(a,b) | a ≤ b},

R2 = {(a,b) | a > b},

R3 = {(a,b) | a = b  or a = −b},

R4 = {(a,b) | a = b}.

The following are not transitive:

R5 = {(a,b) | a = b + 1} (note that both (3,2) and (4,3) belong to 
R5, but not (3,3)),

R6 = {(a,b) | a + b ≤ 3} (note that both (2,1) and (1,2) belong to R6, 
but not (2,2)).

For every integer, a ≤ b 
and b ≤ c, then b ≤ c. 



Combining Relations

• Given two relations R1 and R2, we can combine them using 
basic set operations to form new relations such as R1 ∪ R2, 
R1 ∩ R2, R1 − R2, and R2 − R1.

• Example: Let A = {1,2,3} and B = {1,2,3,4}. The relations 
R1 = {(1,1),(2,2),(3,3)} and R2 = {(1,1),(1,2),(1,3),(1,4)} can 
be combined using basic set operations to form new 
relations:

R1 ∪ R2 ={(1,1),(1,2),(1,3),(1,4),(2,2),(3,3)} 

R1 ∩ R2 ={(1,1)} R1 − R2 ={(2,2),(3,3)} 

R2 − R1 ={(1,2),(1,3),(1,4)} 



Composition

Definition: Suppose
• R1 is a relation from a set A to a set B.

• R2 is a relation from B to a set C.

Then the composition (or composite) of R2 with R1, is 
a relation from A to C where
• if (x,y) is a member of R1 and (y,z) is a member of R2,

then (x,z) is a member of R2∘ R1.



Representing the  Composition of a 
Relation
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R1∘ R2 = {(b,D),(b,B)}
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Powers of a Relation

Definition: Let R be a binary relation on A. Then 
the powers Rn of the relation R can be defined 
inductively by:
• Basis Step: R1 = R

• Inductive Step:  Rn+1 = Rn ∘ R

(see the slides for Section 9.3 for further insights



Powers of a Relation

The powers of a transitive relation are subsets of the 

relation. This is established by the following 
theorem:

Theorem 1: The relation R on a set A is transitive 
iff Rn ⊆ R for n = 1,2,3 ….

(see the text for a proof via mathematical 
induction)



Representing Relations

Section 9.3
• Representing Relations using Matrices

• Representing Relations using Digraphs



Representing Relations Using Matrices

• A relation between finite sets can be represented 
using a zero-one matrix. 

• Suppose R is a relation from A = {a1, a2, …, am} to                         
B = {b1, b2, …, bn}.

• The elements of the two sets can be listed in any 
particular arbitrary order. When A = B, we use the same 
ordering. 



Representing Relations Using Matrices

• The relation R is represented by the matrix                                         
MR = [mij], where

• The matrix representing R has a 1 as its (i,j) entry 
when ai is related to bj and a 0 if  ai is not related to 
bj. 



Examples of Representing 
Relations Using Matrices

Example 1: Suppose that A = {1,2,3} and B = {1,2}. 
Let  R be  the relation from A to B containing (a,b) if 
a ∈ A,    b ∈ B, and a > b. What is the matrix 
representing R (assuming the ordering of elements 
is the same as the increasing numerical order)?

Solution: Because R = {(2,1), (3,1),(3,2)}, the matrix 
is



Examples of Representing 
Relations Using Matrices (cont.)

Example 2: Let A = {a1,a2, a3} and B = {b1,b2, b3,b4, 
b5}. Which ordered pairs are in the relation R
represented by the matrix

Solution: Because R consists of those ordered pairs 
(ai,bj) with mij = 1, it follows that:

R = {(a1, b2), (a2, b1),(a2, b3), (a2, b4),(a3, b1), {(a3, b3), (a3, b5)}. 



Matrices of Relations on Sets

• If R is a reflexive relation, all the elements on the 
main diagonal of MR are equal to 1.

• R is a symmetric relation, if and only if mij = 1 
whenever mji = 1. R is an antisymmetric relation, if 
and only if mij = 0  or mji = 0 when  i≠ j. 



Example of a Relation on a Set

Example 3: Suppose that the relation R on a set is 
represented by the matrix

Is R reflexive, symmetric, and/or antisymmetric?

Solution: Because all the diagonal elements are 
equal to 1, R is reflexive. Because MR is symmetric, 
R is symmetric and not antisymmetric because both 
m1,2 and m2,1 are 1. 



Representing Relations Using 
Digraphs

Definition: A directed graph, or digraph, consists of a set V
of vertices (or nodes) together with a set E of ordered pairs 
of elements of V called edges (or arcs). The vertex a is called 
the initial vertex of the edge (a,b), and the vertex b is called 
the terminal vertex of this edge.

• An edge of the form (a,a) is called a loop.  

Example 7:  A drawing of the directed graph with vertices a, 
b, c, and d, and edges   (a, b), (a, d), (b, b), (b, d), (c, a), (c, b), 
and (d, b) is shown here.



Examples of Digraphs 
Representing Relations

Example 8: What are the ordered pairs in the 
relation represented by this directed graph?

Solution: The ordered pairs in the relation are

(1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 3),        (4, 
1),  and (4, 3)



Determining which Properties a 
Relation has from its Digraph

• Reflexivity: A loop must be present at all vertices in 
the graph.

• Symmetry: If (x,y) is an edge, then so is (y,x).

• Antisymmetry: If (x,y) with x ≠ y is an edge, then (y,x) 
is not an edge. 

• Transitivity: If (x,y) and (y,z) are edges, then so is (x,z). 



Determining which Properties a Relation has 
from its Digraph – Example 1

Reflexive? No, not every vertex has a loop

Symmetric? Yes  (trivially), there is no edge from  one vertex to another

Antisymmetric? Yes  (trivially), there is no edge from one vertexto another

Transitive? Yes, (trivially) since there is no edge from one vertex to another

a

dc

b



Reflexive? No, there are no loops

Symmetric? No, there is an edge from a to b, but not from b to a

Antisymmetric? No, there is an edge from d to b and b to d

Transitive? No, there are edges from a to c and from c to b, but  there is no edge from a to d

a
b

c d

Determining which Properties a Relation has from 
its Digraph – Example 2



Reflexive? No, there are no loops

Symmetric? No, for example, there is no edge from c to a

Antisymmetric? Yes, whenever there is an edge from onevertex to another, there is not one going back  

Transitive? No, there is no edge from a to b

a

dc

b

Determining which Properties a Relation has from 
its Digraph – Example 3



Reflexive? No, there are no loops

Symmetric? No, for example, there is no edge from d to a

Antisymmetric? Yes, whenever there is an edge from one vertex to another, there is not one going 
back  

Transitive? Yes (trivially), there  are no two edges where the first edge ends at the vertex where 
the second edge begins

a

dc

b

Determining which Properties a Relation has from 
its Digraph – Example 4



Example of the Powers of a Relation

a b

cd
R

a b

cd
R2

a b

cd R3

a b

cd
R4

The pair (x,y) is in  Rn if there is a path of length n from x to y in R (following the 
direction of the arrows). 



Equivalence Relations

Section 9.5
• Equivalence Relations

• Equivalence Classes

• Equivalence Classes and Partitions



Equivalence Relations

Definition 1:  A relation on a set A is called an 
equivalence relation if it is reflexive, symmetric, and 
transitive. 

Definition 2:  Two elements a, and b that are 
related by an equivalence relation are called  
equivalent.  The notation a ∼ b is often used to 
denote that a and b are equivalent elements with 
respect to a particular equivalence relation.



Strings

Example: Suppose that R is the relation on the set of
strings of English letters such that aRb if and only if
l(a) = l(b), where l(x) is the length of the string x. Is R
an equivalence relation?

Solution: Show that all of the properties of an
equivalence relation hold.
• Reflexivity: Because l(a) = l(a), it follows that aRa

for all strings a.
• Symmetry: Suppose that aRb. Since l(a) = l(b), l(b)

= l(a) also holds and bRa.
• Transitivity: Suppose that aRb and bRc. Since l(a)

= l(b),and l(b) = l(c), l(a) = l(a) also holds and aRc.



Congruence Modulo m
Example:  Let m be an integer with m > 1. Show that the 
relation R = {(a,b) | a ≡ b (mod m)} is an equivalence 
relation on the set of integers.

Solution:  Recall that a ≡ b (mod m) if and only if m
divides a − b.
• Reflexivity:  a ≡ a (mod m) since a − a = 0 is divisible by m since              

0 = 0 ∙ m.
• Symmetry:  Suppose that a ≡ b (mod m). Then a − b is divisible by 

m, and so a − b = km, where k is an integer. It follows that b − a = 
(− k) m, so b ≡ a (mod m). 

• Transitivity: Suppose that a ≡ b (mod m) and b ≡ c (mod m). Then 
m divides both a − b and b − c. Hence, there are integers k and l 
with a − b = km  and b − c = lm. We obtain by adding the 
equations: a − c = (a − b) + (b − c)  = km + lm = (k + l) m.
Therefore, a ≡ c (mod m).



Divides
Example:  Show that the “divides” relation on the 
set of positive integers is not an equivalence 
relation.

Solution: The properties of reflexivity, and 
transitivity do hold, but there relation is not 
transitive. Hence, “divides” is not an equivalence 
relation.
• Reflexivity:  a ∣ a for all a. 
• Not Symmetric: For example, 2 ∣ 4, but 4 ∤ 2. Hence, the 

relation is not symmetric. 
• Transitivity:  Suppose that a divides b and b divides c. 

Then there are positive integers k and l such that b = ak
and c = bl. Hence, c = a(kl), so a divides c. Therefore, the 
relation is transitive. 



Equivalence Classes

Definition 3: Let R be an equivalence relation on a set A.
The set of all elements that are related to an element a of A
is called the equivalence class of a. The equivalence class of
a with respect to R is denoted by [a]R.

When only one relation is under consideration, we can
write [a], without the subscript R, for this equivalence class.

Note that [a]R = {s|(a,s) ∈ R}.



Equivalence Classes

• If b ∈ [a]R, then b is called a representative of this 
equivalence class. Any element of a class can be used as a 
representative of the class. 

• The equivalence classes of the relation congruence modulo 
m are called the congruence classes modulo m. The 
congruence class of an integer a modulo m is denoted by 
[a]m, so [a]m = {…, a−2m, a−m, a+2m, a+2m, … }. For 
example, 

[0]4 = {…, −8, −4 , 0, 4 , 8 , …}              [1]4 = {…, −7, −3 , 1, 5 , 9 , …}

[2]4 = {…, −6, −2 , 2, 6 , 10 , …} [3]4 = {…, −5, −1 , 3, 7 , 11 , …}



Equivalence Classes and Partitions
Theorem  1:  let R be an equivalence relation on a set A. 
These statements for elements a and b of A are 
equivalent: 

(i)   aRb

(ii)  [a] = [b]

(iii) [a] ∩ [b] = ∅

Proof: We show that (i) implies (ii). Assume that aRb. 
Now suppose that c ∈ [a]. Then aRc. Because aRb and R is 
symmetric, bRa. Because R is transitive and bRa and aRc, it 
follows that bRc. Hence, c ∈ [b]. Therefore, [a]⊆ [b].  A 
similar argument (omitted here) shows that [b]⊆ [a]. Since 
[a]⊆ [b] and [b]⊆ [a],  we have shown that [a] = [b].

(see text for proof  that (ii) implies (iii) and (iii) implies (i))



Partition of a Set

Definition: A partition of a set S is a collection of 
disjoint nonempty subsets of S that have S as their 
union. In other words, the collection of subsets Ai, 
where i ∈ I (where I is an index set), forms a 
partition of S if and only if
• Ai ≠ ∅ for i ∈ I,

• Ai ∩ Aj=∅ when i ≠ j,

• and

A Partition of a Set



An Equivalence Relation Partitions 
a Set
• Let R be an equivalence relation on a set A.  The union of all 

the equivalence classes of R is all of A, since  an element a
of A is in its own equivalence class [a]R.  In other words, 

• From Theorem 1, it follows that these equivalence classes 
are either equal or disjoint, so [a]R ∩[b]R=∅ when [a]R ≠ 
[b]R.

• Therefore, the equivalence classes form a partition of A, 
because they split A into disjoint subsets. 



An Equivalence Relation Partitions a Set

Theorem 2: Let R be an equivalence relation on a set S.  Then the 
equivalence classes of R form a partition of S. Conversely, given 
a partition {Ai | i ∈ I} of the set S, there is an equivalence 
relation R that has the sets Ai, i ∈ I, as its equivalence classes. 

Proof: We have already shown the first part of the theorem.For
the second part, assume that {Ai | i ∈ I} is a partition of S. Let R
be the relation on S consisting of the pairs (x, y) where x and y
belong to the same subset Ai in the partition. We must show 
that R satisfies the properties of an equivalence relation.



An Equivalence Relation Partitions a Set (Cont.)

• Reflexivity: For every a ∈ S, (a,a) ∈ R, because a is in the same 
subset as itself. 

• Symmetry: If (a,b) ∈ R, then b and a are in the same subset of 
the partition, so (b,a) ∈ R. 

• Transitivity: If (a,b) ∈ R and  (b,c) ∈ R, then a and b are in the 
same subset of the partition, as are b and c. Since the subsets 
are disjoint and b belongs to both, the  two subsets of the 
partition must be identical. Therefore, (a,c) ∈ R since a and c
belong to the same subset of the partition. 


