ICS141: Discrete Mathematics for Computer Science I

Dept. Information \& Computer Sci., University of Hawaii

Jan Stelovsky
based on slides by Dr. Baek and Dr. Still Originals by Dr. M. P. Frank and Dr. J.L. Gross
Provided by McGraw-Hill

Quiz

1. State the $1^{\text {st }}$ Principle of Mathematical Induction
2. What is the difference between the $1^{\text {st }}, 2^{\text {nd }}$ and strong principles of Mathematical Induction. (Describe in plain English)
3. What is the big-O complexity of Euclid's Algorithm?

Lecture 21

Chapter 4. Induction and Recursion 4.3 Recursive Definitions and Structural Induction

Recursive Definitions

- In induction, we prove all members of an infinite set satisfy some predicate P by:
- proving the truth of the predicate for larger members in terms of that of smaller members.
- In recursive definitions, we similarly define a function, a predicate, a set, or a more complex structure over an infinite domain (universe of discourse) by:
- defining the function, predicate value, set membership, or structure of larger elements in terms of those of smaller ones.

Recursion

- Recursion is the general term for the practice of defining an object in terms of itself
- or of part of itself.
- This may seem circular, but it isn't necessarily.
- An inductive proof establishes the truth of $P(k+1)$ recursively in terms of $P(k)$.
- There are also recursive algorithms, definitions, functions, sequences, sets, and other structures.

Recursively Defined Functions

- Simplest case: One way to define a function $f: \mathbf{N} \rightarrow S$ (for any set S) or series $a_{n}=f(n)$ is to:
- Define $f(0)$
- For $n>0$, define $f(n)$ in terms of $f(0), \ldots, f(n-1)$
- Example: Define the series $a_{n}=2^{n}$ where n is a nonnegative integer recursively:
- a_{n} looks like $2^{0}, 2^{1}, 2^{2}, 2^{3}, \ldots$
- Let $a_{0}=1$
- For $n>0$, let $a_{n}=2 \cdot a_{n-1}$

Another Example

- Suppose we define $f(n)$ for all $n \in \mathbf{N}$ recursively by:
- Let $f(0)=3$
- For all $n>0$, let $f(n)=2 \cdot f(n-1)+3$
- What are the values of the following?
- $f(1)=2 \cdot f(0)+3=2 \cdot 3+3=9$
- $f(2)=2 \cdot f(1)+3=2 \cdot 9+3=21$
- $f(3)=2 \cdot f(2)+3=2 \cdot 21+3=45$
- $f(4)=2 \cdot f(3)+3=2 \cdot 45+3=93$

Recursive Definition of Factorial

- Give an inductive (recursive) definition of the factorial function,

$$
F(n)=n!=\prod_{1 \leq i \leq n} i=1 \cdot 2 \cdots n
$$

- Basis step: $F(1)=1$
- Recursive step: $F(n)=n \cdot F(n-1)$ for $n>1$

$$
\begin{aligned}
F(2)=2 \cdot F(1) & =2 \cdot 1=2 \\
F(3)=3 \cdot F(2) & =3 \cdot\{2 \cdot F(1)\}=3 \cdot 2 \cdot 1=6 \\
F(4) & =4 \cdot F(3)
\end{aligned}=4 \cdot\{3 \cdot F(2)\}=4 \cdot\{3 \cdot 2 \cdot F(1)\},
$$

The Fibonacci Numbers

- The Fibonacci numbers $f_{n \geq 0}$ is a famous series defined by:

$$
f_{0}=0, \quad f_{1}=1, \quad f_{n \geq 2}=f_{n-1}+f_{n-2}
$$

Inductive Proof about Fibonacci Numbers

- Theorem: $f_{n}<2^{n}$. Ł Implicitly for all $n \in \mathbf{N}$
- Proof: By induction
- Basis step: $f_{0}=0<2^{0}=17$ Note: use of

$$
\left.f_{1}=1<2^{1}=2\right\} \text { base cases of } \text { recursive definition }
$$

- Inductive step: Use $2^{\text {nd }}$ principle of induction (strong induction). Assume $\forall 0 \leq i \leq k, f_{i}<2^{i}$. Then

$$
\begin{aligned}
f_{k+1} & =f_{k}+f_{k-1} \text { is } \\
& <2^{k}+2^{k-1} \\
& <2^{k}+2^{k}=2^{k+1}
\end{aligned}
$$

A Lower Bound on Fibonacci ${ }^{\text {© }}$ Numbers

- Theorem: For all integers $n \geq 3, f_{n}>a^{n-2}$, where $\alpha=\left(1+5^{1 / 2}\right) / 2 \approx 1.61803$.
- Proof. (Using strong induction.)
- Let $P(n)=\left(f_{n}>\alpha^{n-2}\right)$.
- Basis step:

For $n=3$, note that $\alpha^{n-2}=\alpha<2=f_{3}$.
For $n=4, a^{n-2}=a^{2}$

$$
\begin{aligned}
& =\left(1+2 \cdot 5^{1 / 2}+5\right) / 4 \\
& =\left(3+5^{1 / 2}\right) / 2 \\
& \approx 2.61803 \quad(=\alpha+1) \\
& <3=f_{4} .
\end{aligned}
$$

A Lower Bound on Fibonacci Numbers: Proof Continues...

- Inductive step: For $k \geq 4$, assume $P(j)$ for $3 \leq j \leq k$, prove $P(k+1)$.
- $f_{k+1}=f_{k}+f_{k-1}>a^{k-2}+a^{k-3}$ (by inductive hypothesis, $f_{k-1}>\alpha^{k-3}$ and $f_{k}>\alpha^{k-2}$).
- Note that $\alpha^{2}=\alpha+1$.

$$
\text { since }\left(3+5^{1 / 2}\right) / 2=\left(1+5^{1 / 2}\right) / 2+1
$$

- Thus, $\alpha^{k-1}=\alpha^{2} \alpha^{k-3}=(\alpha+1) a^{k-3}$

$$
=\alpha \alpha^{k-3}+\alpha^{k-3}=\alpha^{k-2}+\alpha^{k-3} .
$$

- So, $f_{k+1}=f_{k}+f_{k-1}>\alpha^{k-2}+\alpha^{k-3}=\alpha^{k-1}$.
- Thus $P(k+1)$.

Recursively Defined Sets

- An infinite set S may be defined recursively, by giving:
- A small finite set of base elements of S.
- A rule for constructing new elements of S from previously-established elements.
- Implicitly, S has no other elements but these.
- Example: Let $3 \in S$, and let $x+y \in S$ if $x, y \in S$. What is S ?

Example cont.

- Let $3 \in S$, and let $x+y \in S$ if $x, y \in S$. What is S ?
- $3 \in S$ (basis step)
- $6(=3+3)$ is in S (first application of recursive step)
- $9(=3+6)$ and $12(=6+6)$ are in S (second application of the recursive step)
- $15(=3+12$ or $6+9), 18(=6+12$ or $9+9), 21$ (= $9+12$), $24(=12+12)$ are in S (third application of the recursive step)
- ... so on
- Therefore, $S=\{3,6,9,12,15,18,21,24, \ldots\}$
= set of all positive multiples of 3

