

ICS141: Discrete Mathematics for Computer Science I

Dept. Information & Computer Sci., University of Hawaii

Jan Stelovsky based on slides by Dr. Baek and Dr. Still Originals by Dr. M. P. Frank and Dr. J.L. Gross Provided by McGraw-Hill

Lecture 20

Chapter 4. Induction and Recursion

4.1 Mathematical Induction

4.2 Strong Induction

Mathematical Induction

- A powerful, rigorous technique for proving that a statement P(n) is true for every positive integers n, no matter how large.
- Essentially a "domino effect" principle.
- Based on a predicate-logic inference rule:

P(1) $\forall k \ge 1 \ [P(k) \rightarrow P(k+1)]$

 $\therefore \forall n \ge 1 P(n)$

"The First Principle of Mathematical Induction"

The "Domino Effect"

- Premise #1: Domino #1 falls.
- Premise #2: For every k∈Z⁺, if domino #k falls, then so does domino #k+1.
- Conclusion: All of the dominoes fall down!

Note: this works even if there are infinitely many dominoes!

PRINCIPLE OF MATHEMATICAL INDUCTION:

To prove that a statement P(n) is true for all positive integers n, we complete two steps:

BASIS STEP: Verify that P(1) is true

• INDUCTIVE STEP: Show that the conditional statement $P(k) \rightarrow P(k+1)$ is true for all positive integers k

Validity of Induction

Proof: that $\forall n \ge 1 P(n)$ is a valid consequent:

Given any $k \ge 1$, the 2nd premise $\forall k \ge 1 \ (P(k) \rightarrow P(k+1))$ trivially implies that $(P(1) \rightarrow P(2)) \land (P(2) \rightarrow P(3)) \land \ldots \land (P(n-1) \rightarrow P(n)).$ Repeatedly applying the hypothetical syllogism rule to adjacent implications in this list n - 1 times then gives us $P(1) \rightarrow P(n)$; which together with P(1)(premise #1) and modus ponens gives us P(n). Thus ∀*n*≥1 *P*(*n*). ■

Outline of an Inductive Proof

- Let us say we want to prove $\forall n \in \mathbb{Z}^+ P(n)$.
 - Do the base case (or basis step): Prove P(1).
 - Do the *inductive step*: Prove $\forall k \in \mathbb{Z}^+ P(k) \rightarrow P(k+1)$.
 - *E.g.* you could use a direct proof, as follows:
 - Let $k \in \mathbb{Z}^+$, assume P(k). (inductive hypothesis)
 - Now, under this assumption, prove P(k+1).
 - The inductive inference rule then gives us $\forall n \in \mathbb{Z}^+ P(n)$.

Induction Example

Show that, for $n \ge 1$

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

- Proof by induction

 - Basis step: Let n = 1. The sum of the first positive integer is 1, i.e. P(1) is true.

$$l = \frac{l(l+1)}{2}$$

Example (cont.)

Inductive step: Prove ∀k≥1: P(k)→P(k+1).
 Inductive Hypothesis, P(k):

$$1+2+\dots+k = \frac{k(k+1)}{2}$$

Let $k \ge 1$, assume P(k), and prove P(k+1), i.e.

 $1 + 2 + \dots + k + (k + 1) = \frac{(k + 1)[(k + 1) + 1]}{(k + 1)(k + 1)}$

 $\frac{(k+1)(k+2)}{2}$

This is what you have to prove

- Example 2: Conjecture a formula for the sum of the first *n* positive odd integers. Then prove your conjecture using mathematical induction.
 - Practical Method for General Problem Solving.
 Special Case: Deriving a Formula

<u>Step 1</u>. Calculate the result for some small cases <u>Step 2</u>. Guess a formula to match all those cases <u>Step 3</u>. Verify your guess in the general case

Example 2 (cont.)

Step 1: Examine small cases

- $1 = 1 = 1^{2}$ $1 + 3 = 4 = 2^{2}$ $1 + 3 + 5 = 9 = 3^{2}$ $1 + 3 + 5 + 7 = 16 = 4^{2}$
- Step 2: It sure looks like $1 + 3 + \cdots + (2n-1) = n^2$

Step 3: Try to prove this assertion by induction

$$\forall n \ge 1, \ \sum_{i=1}^{n} (2i-1) = n^2$$

Example Continues...

Prove that the sum of the first n odd positive integers is n². That is, prove:

$$\forall n \ge 1, \quad \sum_{i=1}^{n} (2i-1) = n^2$$

$$\bigvee_{P(n)}$$

- Proof by induction.
 - Basis step: Let n = 1. The sum of the first 1 odd positive integer is 1 which equals 1².
 i.e. P(1) is true.

Example Continues...

■ Inductive step: Prove $\forall k \ge 1$: $P(k) \rightarrow P(k+1)$.

• Inductive Hypothesis,
$$P(k)$$
: $\left[\sum_{i=1}^{k} (2i-1) = k^2\right]$

• Let $k \ge 1$, assume P(k), and prove P(k+1).

$$\sum_{i=1}^{k+1} (2i-1) = \left(\sum_{i=1}^{k} (2i-1)\right) + (2(k+1)-1)$$
$$= k^{2} + (2k+1) \frac{By \text{ inductive}}{hypothesis P(k)}$$
$$= (k+1)^{2}$$

Induction Example 3

- Prove that $\forall n \ge 1$, $n < 2^n$. Let $P(n) = (n < 2^n)$
 - Basis step: P(1): $(1 < 2^1) \equiv (1 < 2)$: True.
 - Inductive step: For $k \ge 1$, prove $P(k) \rightarrow P(k+1)$.
 - Assuming $k < 2^k$, prove $k + 1 < 2^{k+1}$.
 - Note $k + 1 < 2^k + 1$ (by inductive hypothesis)
 - $< 2^{k} + 2^{k}$ (because $1 < 2^{k}$ for $k \ge 1$)

 $= 2 \cdot 2^k = 2^{k+1}$

• So $k + 1 < 2^{k+1}$, i.e. P(k+1) is true

• Therefore, by the principle of mathematical induction P(n) is true for all integers n with $n \ge 1$.

- Rule can also be used to prove ∀n≥c P(n) for a given constant c∈Z, where maybe c ≠ 1.
 - In this circumstance,
 the basis step is to prove *P*(*c*) rather than *P*(1),
 and the inductive step is to prove
 ∀*k*≥*c* (*P*(*k*)→*P*(*k*+1)).

Induction Example 4

- Example 6: Prove that 2ⁿ < n! for n ≥ 4 using mathematical induction.</p>
 - $P(n): 2^n < n!$
 - Basis step: Show that P(4) is true

= (k + 1)!

Since 2⁴ = 16 < 4! = 24, P(4) is true</p>

• Inductive step: Show that $P(k) \rightarrow P(k+1)$ for $k \ge 4$

• $2^{k+1} = 2 \cdot 2^k$ (by definition of exponent)

P(*k*+1) is true

 $< 2 \cdot k!$ (by the inductive hypothesis P(k)) $< (k + 1) \cdot k!$ (because 2 < k+1 for $k \ge 4$)

(by definition of factorial function)

• Therefore, by the principle of mathematical induction P(n) is true for all integers *n* with $n \ge 4$.

Second Principle of Induction

a.k.a. "Strong Induction"

- Characterized by another inference rule:
 - P is true in all previous cases P(1) → $P(1) \land P(2) \land \cdots \land P(k) \rightarrow P(k+1)$ $\therefore \forall n \ge 1: P(n)$
- The only difference between this and the 1st principle is that:
 - the inductive step here makes use of the stronger hypothesis that all of P(1), P(2),..., P(k) are true, not just P(k).

ICS 141: Discrete Mathematics I - Fall 2011

Example of Second Principle

- Show that every integer n > 1 can be written as a product $n = p_1 p_2 \dots p_s = \prod p_i$ of some series of *s* prime numbers.
 - Let P(n) = "n has that property ?"
- **Basis step:** *n* = 2, let *s* = 1, *p*₁ = 2. Then *n* = *p*₁
- Inductive step: Let $k \ge 2$. Assume $\forall 2 \le i \le k$: P(i).
 - Consider k + 1. If it's prime, let s = 1, $p_1 = k + 1$.
 - Else k + 1 = ab, where $1 < a \le k$ and $1 < b \le k$.

Then $a = p_1 p_2 ... p_t$ and $b = q_1 q_2 ... q_u$.

(by Inductive Hypothesis)

Then we have that $k + 1 = p_1 p_2 \dots p_t q_1 q_2 \dots q_u$, a product of s = t + u primes.

Generalizing Strong Induction

- Handle cases where the inductive step is valid only for integers greater than a particular integer
 P(n) is true for ∀n ≥ b (b: fixed integer)
- BASIS STEP: Verify that P(b), P(b+1),..., P(b+j) are true (j: a fixed positive integer)
- INDUCTIVE STEP: Show that the conditional statement $[P(b) \land P(b+1) \land \cdots \land P(k)] \rightarrow P(k+1)$ is true for all positive integers $k \ge b + j$

Another 2nd Principle Example

- Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps.
 - P(n) = "postage of *n* cents can be formed using 4-cent and 5-cent stamps" for $n \ge 12$.
 - Basis step:
 - 12 = 3·4
 - 13 = 2·4 + 1·5
 - $14 = 1 \cdot 4 + 2 \cdot 5$
 - 15 = 3·5
 - So $\forall 12 \leq i \leq 15$, P(i).

Example (cont.)

Inductive step:

- Let $k \ge 15$, assume $\forall 12 \le i \le k$, P(i).
- Note $12 \le k 3 \le k$, so P(k 3).

(by inductive hypothesis) This means we can form postage of k - 3 cents using just 4-cent and 5-cent stamps.

- Add a 4-cent stamp to get postage for k + 1,
 i.e. P(k + 1) is true (postage of k + 1 cents can be formed using 4-cent and 5-cent stamps).
- Therefore, by the 2nd principle of mathematical induction P(n) is true for all integers n with n ≥ 12.

Another 2nd Principle Example

- Prove by the 1st Principle.
 - P(n) = "postage of n cents can be formed using 4-cent and 5-cent stamps", n ≥ 12.
 - Basis step: P(12): 12 = 3·4.
 - Inductive step: $P(k) \rightarrow P(k+1)$
 - <u>Case 1</u>: At least one 4-cent stamp was used for *P*(*k*)
 - k + 1 = k 4 + 5 (i.e. replace the 4-cent stamp with a 5-cent stamp to form a postage of k + 1 cents)

Example Continues...

- Inductive step: $P(k) \rightarrow P(k+1)$
 - Case 2: No 4-cent stamps were used for P(k)
 - Since k ≥12, at least three 5-cent stamps are needed to form postage of k cents
 - k + 1 = k 3.5 + 4.4 (i.e. replace three 5-cent stamps with four 4-cent stamps to form a postage of k + 1 cents)
- Therefore, by the principle of mathematical induction P(n) is true for all integers n with $n \ge 12$.

The Well-Ordering Property

- Another way to prove the validity of the inductive inference rule is by using the well-ordering property, which says that:
 - Every non-empty set of non-negative integers has a minimum (smallest) element.
 - $\forall \emptyset \subset S \subseteq N$: $\exists m \in S$ such that $\forall n \in S, m \leq n$
- This implies that $\{n | \neg P(n)\}$ (if non-empty) has a minimum element *m*, but then the assumption that $P(m-1) \rightarrow P((m-1)+1)$ would be contradicted.