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Lecture 20 

Chapter 4. Induction and Recursion 
 4.1 Mathematical Induction 
 4.2 Strong Induction 
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University of Hawaii University of Hawaii Mathematical Induction 
n  A powerful, rigorous technique for proving 

that a statement P(n) is true for every positive 
integers n, no matter how large. 

n  Essentially a “domino effect” principle. 
n  Based on a predicate-logic inference rule:  

 P(1) 
 ∀k≥1 [P(k)→P(k+1)] 

 ∴∀n≥1 P(n) 

“The First Principle 
of Mathematical 

Induction” 
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University of Hawaii University of Hawaii The “Domino Effect” 
  n  Premise #1: Domino #1 falls. 

n  Premise #2: For every k∈Z+, if domino #k falls, then
 so does domino #k+1. 

n  Conclusion: All of the dominoes fall down! 

k 1 k + 1 

k 

  1     2     3     4     5 
Note: this works even if there are infinitely many dominoes! 
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University of Hawaii University of Hawaii Mathematical Induction Recap. 
n  PRINCIPLE OF MATHEMATICAL INDUCTION: 

 To prove that a statement P(n) is true for all 
positive integers n, we complete two steps: 

n  BASIS STEP: Verify that P(1) is true 

n  INDUCTIVE STEP: Show that the conditional 
statement P(k) → P(k+1) is true for all positive 
integers k 

Inductive Hypothesis 
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University of Hawaii University of Hawaii Validity of Induction 
Proof: that ∀n≥1 P(n) is a valid consequent: 

Given any k≥1, the 2nd premise  
∀k≥1 (P(k) → P(k+1)) trivially implies that  
(P(1)→P(2)) ∧ (P(2)→P(3)) ∧ … ∧ (P(n-1)→P(n)).  
Repeatedly applying the hypothetical syllogism rule 
to adjacent implications in this list n − 1 times then 
gives us P(1) → P(n); which together with P(1) 
(premise #1) and modus ponens gives us P(n).  
Thus ∀n≥1 P(n). ■ 
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University of Hawaii University of Hawaii Outline of an Inductive Proof 
n  Let us say we want to prove ∀n∈Z+ P(n). 

n  Do the base case (or basis step):  
Prove P(1). 

n  Do the inductive step:  
Prove ∀k∈Z+ P(k)→P(k+1). 

n  E.g. you could use a direct proof, as follows: 
n  Let k∈Z+, assume P(k). (inductive hypothesis) 
n  Now, under this assumption, prove P(k+1). 

n  The inductive inference rule then gives us 
∀n∈Z+ P(n). 
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University of Hawaii University of Hawaii 

n  Proof by induction 
n  P(n): the sum of the first n positive integers is 

n(n+1)/2, i.e. P(n) is 
n  Basis step: Let n = 1. The sum of the first 

positive integer is 1, i.e. P(1) is true. 

Induction Example 
n  Show that, for n ≥ 1 

2
)11(11 +
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)1(21 +
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University of Hawaii University of Hawaii Example (cont.) 
n  Inductive step: Prove ∀k≥1: P(k)→P(k+1). 

n  Inductive Hypothesis, P(k): 

n  Let k≥1, assume P(k), and prove P(k+1), i.e. 
2
)1(21 +
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P(k+1) 

This is what 
you have to 
prove 
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University of Hawaii University of Hawaii Example (cont.) 
n  Inductive step continues… 

n  Therefore, by the principle of mathematical 
induction P(n) is true for all integers n with n≥1 
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By inductive 
hypothesis P(k) 

P(k+1) 
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University of Hawaii University of Hawaii Induction Example 2 

n  Example 2: Conjecture a formula for the sum of 
the first n positive odd integers. Then prove your 
conjecture using mathematical induction. 

n  Practical Method for General Problem Solving. 
 Special Case: Deriving a Formula 

 Step 1. Calculate the result for some small cases 
 Step 2. Guess a formula to match all those cases 
 Step 3. Verify your guess in the general case 
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University of Hawaii University of Hawaii Example 2 (cont.) 
n  Step 1: Examine small cases 

      1 = 1 
        1 + 3 = 4 
  1 + 3 + 5 = 9 
 1 + 3 + 5 + 7 = 16 

n  Step 2: It sure looks like 1 + 3 + ··· + (2n–1) = n2 

n  Step 3: Try to prove this assertion by induction 

= 12 

= 22 

= 32 

= 42 
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University of Hawaii University of Hawaii Example Continues… 
n  Prove that the sum of the first n odd positive 

integers is n2. That is, prove: 
 
 

n  Proof by induction. 
n  Basis step: Let n = 1. The sum of the first 

1 odd positive integer is 1 which equals 12. 
i.e. P(1) is true. 

2

1

)12(,1 nin
n

i
=−≥∀ ∑

=

  

P(n) 



13-14 ICS 141: Discrete Mathematics I – Fall 2011 

University of Hawaii University of Hawaii Example Continues… 
n  Inductive step: Prove ∀k≥1: P(k)→P(k+1). 

n  Inductive Hypothesis, P(k): 

n  Let k≥1, assume P(k), and prove P(k+1). 
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University of Hawaii University of Hawaii Induction Example 3 
n  Prove that ∀n ≥ 1, n < 2n.  Let P(n) = (n < 2n) 

n  Basis step: P(1): (1 < 21) ≡ (1 < 2): True. 
n  Inductive step: For k ≥1, prove P(k)→P(k+1). 

n  Assuming k < 2k, prove k + 1 < 2k+1. 
n  Note k + 1 < 2k + 1  (by inductive hypothesis) 
    < 2k + 2k (because 1 < 2k for k ≥1) 
    = 2⋅2k = 2k+1 

n  So k + 1 < 2k+1, i.e. P(k+1) is true 

n  Therefore, by the principle of mathematical 
induction P(n) is true for all integers n with n ≥ 1. 
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University of Hawaii University of Hawaii Generalizing Induction 

n  Rule can also be used to prove ∀n≥c P(n)  
for a given constant c∈Z, where maybe c ≠ 1. 

n  In this circumstance,  

 the basis step is to prove P(c) rather than P(1),  

 and the inductive step is to prove  

 ∀k≥c (P(k)→P(k+1)). 
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University of Hawaii University of Hawaii Induction Example 4 
n  Example 6: Prove that 2n < n! for n ≥ 4 using 

mathematical induction. 
n  P(n): 2n < n!  
n  Basis step: Show that P(4) is true 

n  Since 24 = 16 < 4! = 24, P(4) is true 
n  Inductive step: Show that P(k)→P(k+1) for k ≥ 4  

n  2k+1 = 2·2k   (by definition of exponent) 
        < 2·k!   (by the inductive hypothesis P(k)) 
        < (k + 1)·k!  (because 2 < k+1 for k ≥ 4 ) 
        = (k + 1)!  (by definition of factorial function) 

n  Therefore, by the principle of mathematical 
induction P(n) is true for all integers n with n ≥ 4. 

P(k+1) 
 is true 
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University of Hawaii University of Hawaii Second Principle of Induction 

n  Characterized by another inference rule: 

 P(1) 
∀k≥1: (P(1) ∧ P(2) ∧ ··· ∧ P(k)) → P(k+1) 

   ∴∀n≥1: P(n) 

n  The only difference between this and the 1st 
principle is that: 
n  the inductive step here makes use of the 

stronger hypothesis that all of P(1), P(2),…, 
P(k) are true, not just P(k). 

P is true in all previous cases 

a.k.a. “Strong Induction” 
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University of Hawaii University of Hawaii Example of Second Principle 
n  Show that every integer n >1 can be written as a 

product n = p1p2…ps = ∏ pi of some series of s 
prime numbers.   
n  Let P(n) = “n has that property   ” 

n  Basis step: n = 2, let s = 1, p1 = 2. Then n = p1 
n  Inductive step: Let k≥2. Assume ∀2 ≤ i ≤ k: P(i). 

n  Consider k + 1. If it’s prime, let s = 1, p1 = k + 1. 
n  Else k + 1 = ab, where 1 < a ≤ k and 1 < b ≤ k. 

 Then a = p1p2…pt and b = q1q2…qu.  
      (by Inductive Hypothesis) 
 Then we have that k + 1 = p1p2…pt q1q2…qu,  
a product of s = t + u primes. 
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University of Hawaii University of Hawaii Generalizing Strong Induction 
n  Handle cases where the inductive step is valid 

only for integers greater than a particular integer 
n  P(n) is true for ∀n ≥ b (b: fixed integer) 

n  BASIS STEP: Verify that P(b), P(b+1),…, P(b+j) 
are true (j: a fixed positive integer) 

n  INDUCTIVE STEP: Show that the conditional 
statement [P(b) ∧ P(b+1 ) ∧ ··· ∧ P(k)] → P(k+1) 
is true for all positive integers k ≥ b + j 
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University of Hawaii University of Hawaii Another 2nd Principle Example 
n  Prove that every amount of postage of 12 cents or 

more can be formed using just 4-cent and 5-cent 
stamps.   
n  P(n) = “postage of n cents can be formed using 

4-cent and 5-cent stamps” for n ≥ 12. 
n  Basis step:  

n  12 = 3⋅4 
n  13 = 2⋅4 + 1⋅5 
n  14 = 1⋅4 + 2⋅5 
n  15 = 3⋅5 
n  So ∀12 ≤ i ≤ 15, P(i). 
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University of Hawaii University of Hawaii Example (cont.) 
n  Inductive step:  

n  Let k ≥15, assume ∀12 ≤ i ≤ k, P(i). 
n  Note 12 ≤ k - 3 ≤ k, so P(k - 3).  

    (by inductive hypothesis)  
This means we can form postage of k – 3 cents 
using just 4-cent and 5-cent stamps. 

n  Add a 4-cent stamp to get postage for k + 1,  
i.e. P(k + 1) is true (postage of k + 1 cents  
can be formed using 4-cent and 5-cent stamps). 

n  Therefore, by the 2nd principle of mathematical 
induction P(n) is true for all integers n with n ≥ 12. 
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University of Hawaii University of Hawaii Another 2nd Principle Example 
n  Prove by the 1st Principle.   

n  P(n) = “postage of n cents can be formed using 
4-cent and 5-cent stamps”, n ≥ 12. 

n  Basis step: P(12): 12 = 3⋅4. 

n  Inductive step: P(k) → P(k+1) 
n  Case 1: At least one 4-cent stamp was used 

for P(k) 
n  k + 1 = k – 4 + 5 (i.e. replace the 4-cent 

stamp with a 5-cent stamp to form a 
postage of k + 1 cents) 
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University of Hawaii University of Hawaii Example Continues… 
n  Inductive step: P(k) → P(k+1) 

n  Case 2: No 4-cent stamps were used for P(k) 
n  Since k ≥12, at least three 5-cent stamps are 

needed to form postage of k cents  
n  k + 1 = k – 3⋅5 + 4⋅4 (i.e. replace three 5-cent 

stamps with four 4-cent stamps to form a 
postage of k + 1 cents) 

n  Therefore, by the principle of mathematical 
induction P(n) is true for all integers n with n ≥ 12. 
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University of Hawaii University of Hawaii The Well-Ordering Property 
n  Another way to prove the validity of the 

inductive inference rule is by using the well-
ordering property, which says that: 
n  Every non-empty set of non-negative 

integers has a minimum (smallest) element. 
n  ∀∅⊂S⊆N: ∃m∈S such that ∀n∈S, m ≤ n 

n  This implies that {n|¬P(n)} (if non-empty) has a 
minimum element m, but then the assumption 
that P(m−1)→P((m−1)+1) would be 
contradicted.  


