ICS141: Discrete Mathematics for Computer Science I

Dept. Information \& Computer Sci., University of Hawaii

Jan Stelovsky
based on slides by Dr. Baek and Dr. Still Originals by Dr. M. P. Frank and Dr. J.L. Gross
Provided by McGraw-Hill

Lecture 20

Chapter 4. Induction and Recursion

4.1 Mathematical Induction
4.2 Strong Induction

Mathematical Induction

- A powerful, rigorous technique for proving that a statement $P(n)$ is true for every positive integers n, no matter how large.
- Essentially a "domino effect" principle.
- Based on a predicate-logic inference rule:
$P(1)$
$\forall k \geq 1[P(k) \rightarrow P(k+1)]$
$\therefore \forall n \geq 1 P(n)$
"The First Principle of Mathematical Induction"

The "Domino Effect"

- Premise \#1: Domino \#1 falls.
- Premise \#2: For every $k \in Z^{+}$, if domino \#k falls, then so does domino \#k+1.
- Conclusion: All of the dominoes fall down!

Note: this works even if there are infinitely many dominoes!

Mathematical Induction Recap.

- PRINCIPLE OF MATHEMATICAL INDUCTION:

To prove that a statement $P(n)$ is true for all positive integers n, we complete two steps:

- BASIS STEP: Verify that $P(1)$ is true
- INDUCTIVE STEP: Show that the conditional statement $\underbrace{P(k)} \rightarrow P(k+1)$ is true for all positive integers k

Inductive Hypothesis

Validity of Induction

Proof: that $\forall n \geq 1 P(n)$ is a valid consequent:
Given any $k \geq 1$, the $2^{\text {nd }}$ premise
$\forall k \geq 1(P(k) \rightarrow P(k+1))$ trivially implies that
$(P(1) \rightarrow P(2)) \wedge(P(2) \rightarrow P(3)) \wedge \ldots \wedge(P(n-1) \rightarrow P(n))$.
Repeatedly applying the hypothetical syllogism rule to adjacent implications in this list $n-1$ times then gives us $P(1) \rightarrow P(n)$; which together with $P(1)$ (premise \#1) and modus ponens gives us $P(n)$. Thus $\forall n \geq 1 P(n)$. ■

Outline of an Inductive Proof

- Let us say we want to prove $\forall n \in \mathbf{Z}^{+} P(n)$.
- Do the base case (or basis step): Prove $P(1)$.
- Do the inductive step: Prove $\forall k \in Z^{+} P(k) \rightarrow P(k+1)$.
- E.g. you could use a direct proof, as follows:
- Let $k \in \mathbf{Z}^{+}$, assume $P(k)$. (inductive hypothesis)
- Now, under this assumption, prove $P(k+1)$.
- The inductive inference rule then gives us $\forall n \in \mathbf{Z}^{+} P(n)$.

Induction Example

- Show that, for $n \geq 1$

$$
1+2+\cdots+n=\frac{n(n+1)}{2}
$$

- Proof by induction
- $P(n)$: the sum of the first n positive integers is $n(n+1) / 2$, i.e. $P(n)$ is
- Basis step: Let $n=1$. The sum of the first positive integer is 1, i.e. $P(1)$ is true.

$$
1=\frac{1(1+1)}{2}
$$

Example (cont.)

- Inductive step: Prove $\forall k \geq 1: P(k) \rightarrow P(k+1)$.
- Inductive Hypothesis, $P(k)$:

$$
1+2+\cdots+k=\frac{k(k+1)}{2}
$$

- Let $k \geq 1$, assume $P(k)$, and prove $P(k+1)$, i.e.

This is what

 you have to prove$1+2+\cdots+k+(k+1)=\frac{(k+1)[(k+1)+1]}{2}$

$$
=\frac{(k+1)(k+2)}{2}
$$

$$
P(k+1)
$$

Example (cont.)

- Inductive step continues...

By inductive

hypothesis $P(k)$

$$
\begin{aligned}
1+2+\cdots+k+(k+1) & =\frac{k(k+1)}{2}+(k+1) \\
& =\frac{k(k+1)}{2}+\frac{2(k+1)}{2} \\
& =\frac{k^{2}+3 k+2}{2} \\
P(\boldsymbol{k}+\mathbf{1}) & =\frac{(k+1)(k+2)}{2}
\end{aligned}
$$

- Therefore, by the principle of mathematical induction $P(n)$ is true for all integers n with $n \geq 1$

Induction Example 2

- Example 2: Conjecture a formula for the sum of the first n positive odd integers. Then prove your conjecture using mathematical induction.
- Practical Method for General Problem Solving. Special Case: Deriving a Formula Step 1. Calculate the result for some small cases Step 2. Guess a formula to match all those cases Step 3. Verify your guess in the general case

Example 2 (cont.)

- Step 1: Examine small cases

$$
\begin{aligned}
1=1 & =1^{2} \\
1+3=4 & =2^{2}
\end{aligned}
$$

$$
1+3+5=9=3^{2}
$$

$$
1+3+5+7=16=4^{2}
$$

- Step 2: It sure looks like $1+3+\cdots+(2 n-1)=n^{2}$
- Step 3: Try to prove this assertion by induction

$$
\forall n \geq 1, \sum_{l=1}^{n}(2 i-1)=n^{2}
$$

Example Continues...

- Prove that the sum of the first n odd positive integers is n^{2}. That is, prove:

$$
\forall n \geq 1, \sum_{i=1}^{n}(\underbrace{2 i-1}_{P(n)})=n^{2}
$$

- Proof by induction.
- Basis step: Let $n=1$. The sum of the first 1 odd positive integer is 1 which equals 1^{2}. i.e. $P(1)$ is true.

Example Continues...

- Inductive step: Prove $\forall k \geq 1: P(k) \rightarrow P(k+1)$.
- Inductive Hypothesis, $P(k):\left[\sum_{i=1}^{k}(2 i-1)=k^{2}\right]$
- Let $k \geq 1$, assume $P(k)$, and prove $P(k+1)$.

$$
\begin{aligned}
\sum_{i=1}^{k+1}(2 i-1) & =\left(\sum_{i=1}^{k}(2 i-1)+(2(k+1)-1)\right. \\
& =k^{2}+(2 k+1) \begin{array}{c}
\text { By inductive } \\
\text { hypothesis } P(k)
\end{array} \\
& =(k+1)^{2}
\end{aligned}
$$

Induction Example 3

- Prove that $\forall n \geq 1, n<2^{n}$. Let $P(n)=\left(n<2^{n}\right)$
- Basis step: $P(1):\left(1<2^{1}\right) \equiv(1<2)$: True.
- Inductive step: For $k \geq 1$, prove $P(k) \rightarrow P(k+1)$.
- Assuming $k<2^{k}$, prove $k+1<2^{k+1}$.
- Note $k+1<2^{k}+1$ (by inductive hypothesis)

$$
\begin{aligned}
& <2^{k}+2^{k}\left(\text { because } 1<2^{k} \text { for } k \geq 1\right) \\
& =2 \cdot 2^{k}=2^{k+1}
\end{aligned}
$$

- So $k+1<2^{k+1}$, i.e. $P(k+1)$ is true
- Therefore, by the principle of mathematical induction $P(n)$ is true for all integers n with $n \geq 1$.

Generalizing Induction

- Rule can also be used to prove $\forall n \geq c P(n)$ for a given constant $c \in \mathbf{Z}$, where maybe $c \neq 1$.
- In this circumstance,
the basis step is to prove $P(c)$ rather than $P(1)$, and the inductive step is to prove
$\forall k \geq c(P(k) \rightarrow P(k+1))$.

Induction Example 4

- Example 6: Prove that $2^{n}<n!$ for $n \geq 4$ using mathematical induction.
- $P(n): 2^{n}<n!$
- Basis step: Show that $P(4)$ is true
- Since $2^{4}=16<4!=24, P(4)$ is true
- Inductive step: Show that $P(k) \rightarrow P(k+1)$ for $k \geq 4$
- $2^{k+1}=2 \cdot 2^{k} \quad$ (by definition of exponent)
$P(k+1)$ is true
$<2 \cdot k$!
$<(k+1) \cdot k!\quad$ (because $2<k+1$ for $k \geq 4$)
$=(k+1)!\quad$ (by definition of factorial function)
- Therefore, by the principle of mathematical induction $P(n)$ is true for all integers n with $n \geq 4$.

Second Principle of Induction

a.k.a. "Strong Induction"

- Characterized by another inference rule:
P is true in all previous cases
$\forall k \geq 1:(P(1) \wedge P(2) \wedge \cdots \wedge P(k)) \rightarrow P(k+1)$
$\therefore \forall n \geq 1: P(n)$
- The only difference between this and the 1st principle is that:
- the inductive step here makes use of the stronger hypothesis that all of $P(1), P(2), \ldots$, $P(k)$ are true, not just $P(k)$.

Example of Second Principle

- Show that every integer $n>1$ can be written as a product $n=p_{1} p_{2} \ldots p_{s}=\prod p_{i}$ of some series of s prime numbers.
- Let $P(n)=$ " n has that property "
- Basis step: $n=2$, let $s=1, p_{1}=2$. Then $n=p_{1}$
- Inductive step: Let $k \geq 2$. Assume $\forall 2 \leq i \leq k$: $P(i)$.
- Consider $k+1$. If it's prime, let $s=1, p_{1}=k+1$.
- Else $k+1=a b$, where $1<a \leq k$ and $1<b \leq k$. Then $a=p_{1} p_{2} \ldots p_{t}$ and $b=q_{1} q_{2} \ldots q_{u}$.
(by Inductive Hypothesis)
Then we have that $k+1=p_{1} p_{2} \ldots p_{t} q_{1} q_{2} \ldots q_{u}$, a product of $s=t+u$ primes.

Generalizing Strong Induction

- Handle cases where the inductive step is valid only for integers greater than a particular integer - $P(n)$ is true for $\forall n \geq b$ (b : fixed integer)
- BASIS STEP: Verify that $P(b), P(b+1), \ldots, P(b+j)$ are true (j : a fixed positive integer)
- INDUCTIVE STEP: Show that the conditional statement $[P(b) \wedge P(b+1) \wedge \cdots \wedge P(k)] \rightarrow P(k+1)$ is true for all positive integers $k \geq b+j$

Another 2nd Principle Example

- Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps.
- $P(n)=$ "postage of n cents can be formed using 4-cent and 5-cent stamps" for $n \geq 12$.
- Basis step:
- $12=3.4$
- 13 = $2 \cdot 4+1 \cdot 5$
- $14=1 \cdot 4+2 \cdot 5$
- 15 = 3.5
- So $\forall 12 \leq i \leq 15, P(i)$.

Example (cont.)

- Inductive step:
- Let $k \geq 15$, assume $\forall 12 \leq i \leq k, P(i)$.
- Note $12 \leq k-3 \leq k$, so $P(k-3)$.
(by inductive hypothesis)
This means we can form postage of $k-3$ cents using just 4-cent and 5-cent stamps.
- Add a 4-cent stamp to get postage for $k+1$, i.e. $P(k+1$) is true (postage of $k+1$ cents can be formed using 4 -cent and 5 -cent stamps).
- Therefore, by the $2^{\text {nd }}$ principle of mathematical induction $P(n)$ is true for all integers n with $n \geq 12$.

Another 2nd Principle Example

- Prove by the $1^{\text {st }}$ Principle.
- $P(n)=$ "postage of n cents can be formed using 4-cent and 5-cent stamps", $n \geq 12$.
- Basis step: $P(12): 12=3 \cdot 4$.
- Inductive step: $P(k) \rightarrow P(k+1)$
- Case 1: At least one 4-cent stamp was used for $P(k)$
- $k+1=k-4+5$ (i.e. replace the 4-cent stamp with a 5 -cent stamp to form a postage of $k+1$ cents)

Example Continues...

- Inductive step: $P(k) \rightarrow P(k+1)$
- Case 2: No 4-cent stamps were used for $P(k)$
- Since $k \geq 12$, at least three 5-cent stamps are needed to form postage of k cents
$-k+1=k-3 \cdot 5+4 \cdot 4$ (i.e. replace three 5-cent stamps with four 4 -cent stamps to form a postage of $k+1$ cents)
- Therefore, by the principle of mathematical induction $P(n)$ is true for all integers n with $n \geq 12$.

The Well-Ordering Property

- Another way to prove the validity of the inductive inference rule is by using the wellordering property, which says that:
- Every non-empty set of non-negative integers has a minimum (smallest) element.
- $\forall \varnothing \subset S \subseteq N$: $\exists m \in S$ such that $\forall n \in S, m \leq n$
- This implies that $\{n \mid \neg P(n)\}$ (if non-empty) has a minimum element m, but then the assumption that $P(m-1) \rightarrow P((m-1)+1)$ would be contradicted.

