CSE-101: Discrete Mathematics Chapter 10: Graphs

Lec Md Jakaria
Dept of CSE, MIST

Simple Graph

Definition 1. A simple graph $G=(V, E)$ consists of V, a nonempty set of vertices, and E, a set of unordered pairs of distinct elements of V called edges.

A simple graph

Los Angeles

How many vertices? How many edges?

A simple graph

SET OF VERTICES

V = \{ Chicago, Denver, Detroit, Los Angeles, New York, San Francisco, Washington \}

SET OF EDGES

$\mathrm{E}=\{$ \{San Francisco, Los Angeles\}, \{San Francisco, Denver\}, \{Los Angeles, Denver\}, \{Denver, Chicago\}, \{Chicago, Detroit\}, \{Detroit, New York\}, \{New York, Washington\}, \{Chicago, Washington\}, \{Chicago, New York\} \}

A simple graph

Los Angeles
The network is made up of computers and telephone lines between computers. There is at most 1 telephone line between 2 computers in the network. Each line operates in both directions. No computer has a telephone line to itself.

These are undirected edges, each of which connects two distinct vertices, and no two edges connect the same pair of vertices.

A Non-Simple Graph

Definition 2. In a multigraph $G=(V, E)$ two or more edges may connect the same pair of vertices.

A Multigraph

THERE CAN BE MULTIPLE TELEPHONE LINES BETWEEN TWO COMPUTERS IN THE NETWORK.

Los Angeles

Multiple Edges

Two edges are called multiple or parallel edges if they connect the same two distinct vertices.

Another Non-Simple Graph

Definition 3. In a pseudograph $G=(V, E)$ two or more edges may connect the same pair of vertices, and in addition, an edge may connect a vertex to itself.

A Pseudograph

THERE CAN BE TELEPHONE LINES IN THE NETWORK FROM A COMPUTER TO ITSELF (for diagnostic use).

Loops

An edge is called a loop
if it connects a vertex to itself.

Undirected Graphs

A Directed Graph

Definition 4. In a directed graph $G=(V, E)$ the edges are ordered pairs of (not necessarily distinct) vertices.

A Directed Graph

SOME TELEPHONE LINES IN THE NETWORK MAY OPERATE IN ONLY ONE DIRECTION .
Those that operate in two directions are represented by pairs of edges in opposite directions.

A Directed Multigraph

Definition 5. In a directed multigraph $G=(V, E)$ the edges are ordered pairs of (not necessarily distinct) vertices, and in addition there may be multiple edges.

A Directed Multigraph

THERE MAY BE SEVERAL ONE-WAY LINES

IN THE SAME DIRECTION FROM ONE COMPUTER
TO ANOTHER IN THE NETWORK.

Types of Graphs

TYPE	EDGES	MULTIPLE EDGES ALLOWED?	LOOPS ALLOWED?
Simple graph	Undirected	NO	NO
Multigraph	Undirected	YES	NO
Pseudograph	Undirected	YES	YES
Directed graph	Directed	NO	YES
Directed multigraph	Directed	YES	YES

Adjacent Vertices (Neighbors)

Definition 1. Two vertices, u and v in an undirected graph G are called adjacent (or neighbors) in G, if $\{u, v\}$ is an edge of G.

An edge e connecting u and v is called incident with vertices u and v, or is said to connect u and v. The vertices u and v are called endpoints of edge $\{u, v\}$.

Degree of a vertex

Definition 1. The degree of a vertex in an undirected graph is the number of edges incident with it, except that a loop at a vertex contributes twice to the degree of that vertex.

$$
\operatorname{deg}(d)=1
$$

Degree of a vertex

Definition 1. The degree of a vertex in an undirected graph is the number of edges incident with it, except that a loop at a vertex contributes twice to the degree of that vertex.

Degree of a vertex

Definition 1. The degree of a vertex in an undirected graph is the number of edges incident with it, except that a loop at a vertex contributes twice to the degree of that vertex.
$\operatorname{deg}(b)=6$

Degree of a vertex

Find the degree of all the other vertices. $\operatorname{deg}(a) \quad \operatorname{deg}(c) \quad \operatorname{deg}(f) \quad \operatorname{deg}(g)$

$\operatorname{deg}(d)=1$
$\operatorname{deg}(e)=0$

Degree of a vertex

Find the degree of all the other vertices. $\operatorname{deg}(a)=2 \operatorname{deg}(c)=4 \operatorname{deg}(f)=3 \quad \operatorname{deg}(g)=4$
$\operatorname{deg}(b)=6$

$\operatorname{deg}(d)=1$
$\operatorname{deg}(e)=0$

Degree of a vertex

Find the degree of all the other vertices.
$\operatorname{deg}(a)=2 \operatorname{deg}(c)=4 \quad \operatorname{deg}(f)=3 \quad \operatorname{deg}(g)=4$
TOTAL of degrees $=2+4+3+4+6+1+0=20$
$\operatorname{deg}(b)=6$

$\operatorname{deg}(d)=1$
$\operatorname{deg}(e)=0$

Degree of a vertex

Find the degree of all the other vertices. $\operatorname{deg}(a)=2 \operatorname{deg}(c)=4 \quad \operatorname{deg}(f)=3 \quad \operatorname{deg}(g)=4$

TOTAL of degrees $=\mathbf{2 + 4 + 3 + 4 + 6 + 1 + 0 = 2 0}$ TOTAL NUMBER OF EDGES = 10 $\operatorname{deg}(b)=6$

$\operatorname{deg}(d)=1$
$\operatorname{deg}(e)=0$

Handshaking Theorem

Theorem 1. Let $G=(V, E)$ be an undirected graph G with e edges. Then

$$
\sum_{v \in v} \operatorname{deg}(v)=2 e
$$

"The sum of the degrees over all the vertices equals twice the number of edges."

NOTE: This applies even if multiple edges and loops are present.

Subgraph

Definition 6. A subgraph of a graph $G=(V, E)$ is a graph $\mathrm{H}=(W, F)$ where $W \subseteq V$ and $F \subseteq E$.

C_{5} is a subgraph of K_{5}

C_{5}

Union

Definition 7. The union of 2 simple graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is the simple graph with vertex set $V=V_{1} \cup V_{2}$ and edge set $E=E_{1} \cup E_{2}$. The union is denoted by $G_{1} \cup G_{2}$.

W_{5} is the union of S_{5} and C_{5}

Homework

p. 443 \# 1 a, 2 a.
p. 454 \# 1-5, 12 adef, 19 abce, 44.

Adjacency Matrix

A simple graph $G=(V, E)$ with n vertices can be represented by its adjacency matrix, A, where entry $a_{i j}$ in row i and column j is

$$
a_{i j}= \begin{cases}1 & \text { if }\left\{v_{i}, v_{j}\right\} \text { is an edge in } G \\ 0 & \text { otherwise }\end{cases}
$$

Finding the adjacency matrix

This graph has 6 vertices
a, b, c, d, e, f. We can arrange them in that order.

W_{5}

Finding the adjacency matrix

There are edges from \mathbf{a} to \mathbf{b}, from \mathbf{a} to e , and from \mathbf{a} to f

Finding the adjacency matrix

There are edges from b to a, from b to c, and from b to f

Finding the adjacency matrix

There are edges from \mathbf{c} to \mathbf{b}, from \mathbf{c} to \mathbf{d}, and from \mathbf{c} to f

Finding the adjacency matrix

COMPLETE THE ADJACENCY MATRIX . . .

Finding the adjacency matrix

Notice that this matrix is symmetric. That is $\mathbf{a}_{i j}=\mathbf{a}_{j i}$ Why?

Path of Length \mathbf{n}

Definition 1. A path of length n from u to v in an undirected graph is a sequence of edges
$e_{1}, e_{2}, \ldots, e_{n}$ of the graph such that edge e_{1} has endpoints x_{0} and x_{1}, edge e_{2} has endpoints x_{1} and x_{2},
and edge e_{n} has endpoints x_{n-1} and x_{n},
where $\mathrm{x}_{0}=u$ and $\mathrm{x}_{\mathrm{n}}=v$.

One path from a to e

This path passes through vertices f and d in that order.
W_{5}

One path from a to a

W_{5}

This path passes through vertices f, d, e, in that order. It has length 4.

It is a circuit because it begins and ends at the same vertex.

It is called simple because it does not contain the same edge more than once.

Path of Length n

Definition 3. An undirected graph is called connected if there is a path between every pair of distinct vertices of the graph.

IS THIS GRAPH CONNECTED?

W_{5}

Theorem 1

Theorem 1. There is a simple path between every pair of distinct vertices of a connected undirected graph.

Paths of Length r between Vertices

Theorem 2. Let G be a graph with adjacency matrix A with respect to the ordering
$v_{1}, v_{2}, \ldots, v_{n}$. The number of different paths of length r from v_{i} to v_{j}, where r is a postive integer, equals the entry in row i and column j of A^{r}.

NOTE: This applies with directed or undirected edges, with multiple edges and loops allowed.

Homework

p. 463 \# 1, 5, 9 adef, 11, 13, 15, 17.
p. 473 \# 1, 5, 10 abc (use adjacency matrix A^{r}), 23, 37.

Thank You

