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Combinatorics

Count the number of ways to put things together into various combinations.

e.g. If a password is 6, 7, or 8 characters long; a character is an uppercase 
letters  or a digit,  and the password is required to include at least one digit -
how many passwords can there be?

Or, how many graphs are there on N nodes? How many of those are

3-colorable?

Many uses in discrete math (because of all the discrete strucures), including 
e.g. probability theory (next topic).

E.g., what is the probability that a randomly generated graph is 3-
colorable? 

First, two most basic rules:

– Sum rule

– Product rule

How can we figure that out?
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Sum Rule

Let us consider two tasks:

– m is the number of ways to do task 1

– n is the number of ways to do task 2

– Tasks are independent of each other, i.e.,

• Performing task 1 does not accomplish task 2 and vice versa.

Sum rule: the number of ways that “either task 1 or task 2 can be done, 
but not both”, is m + n.

Generalizes to multiple tasks ... 

Task 1

Task 2
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Example

A student can choose a computer project from one of three lists. The three lists contain 23, 

15, and 19 possible projects respectively. How many possible projects are there to 

choose from?

23+15+19

Ok… not to worry. things will get more exciting... ☺
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Sum rule example

How many strings of 4 decimal digits, have exactly three digits that are 9s?

– The string can have:

• The non-9 as the first digit

• OR the non-9 as the second digit

• OR the non-9 as the third digit

• OR the non-9 as the fourth digit

• Thus, we use the sum rule

– For each of those cases, there are 9 possibilities for the non-9 digit (any number 
other than 9)

– Thus, the answer is 9+9+9+9 = 36
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Set Theoretic Version

If A is the set of ways to do task 1, and B the set of ways to do task 2, and 

if A and B are disjoint, then:

“the ways to do either task 1 or 2 are 

AB, and |AB| = |A| + |B|”



Product Rule

Let us consider two tasks:

– m is the number of ways to do task 1

– n is the number of ways to do task 2

– Tasks are independent of each other, i.e.,

• Performing task 1does not accomplish task 2 and vice versa.

Product rule: the number of ways that “both tasks 1 and 2 can be done” in mn.

Generalizes to multiple tasks ...

task 1 task 2
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Product rule example

– There are 18 math majors and 325 CS majors

– How many ways are there to pick one math major and one CS major?

Total is 18 * 325 = 5850



Product Rule

How many functions are there from set A to set B?

A B

To define each function we have to make 3 choices, one for each 
element of A. Each has 4 options (to select an element from B).

How many ways can each choice 
be made?4 4 4

43= 64 = |B| |A|

So, how many Boolean

functions on n vars?

22n



How many one-to-one functions are there from set A to set B?

A B

To define each function we have to make 3 choices, one for each 
element of A.

How many ways can each choice 
be made?

4 3 2

24

# is called P(n,r) for r-permutations

(here P(4,3) --- “3 unique choices out of 4 

objects”, order matters)

Ex: S={1,2,3}. Ordered arrangement

3,1,2 is called a permutation.

There are n! of those (product rule).

3,2 is a r-permutation (r=2).

There are n!/(n-r!) of those.

Hmm. What if |A| = 4?
= 4! / (4-3)!
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Product rule example

How many strings of 4 decimal digits, do not contain the same digit twice?

We want to chose a digit, then another that is not the same, then another…

• First digit: 10 possibilities

• Second digit: 9 possibilities (all but first digit)

• Third digit: 8 possibilities

• Fourth digit: 7 possibilities

Total = 10*9*8*7 = 5040

How many strings of 4 decimal digits, end with an even digit?

First three digits have 10 possibilities

Last digit has 5 possibilities

Total = 10*10*10*5 = 5000
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Set Theoretic Version

If A is the set of ways to do task 1, and B the set of ways to do task 2, and 

if A and B are disjoint, then

The ways to do both task 1 and 2 can be represented as AB, 

and |AB|=|A|·|B|
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More complex counting problems

Combining the product rule and the sum rule.

Thus we can solve more interesting and complex problems.



Count the number of ways to put things together into various 

combinations.

E.g. If a password is 6, 7, or 8 characters long; a character is an uppercase 

letters  or a digit,  and the password is required to include at least one digit. 

How many passwords can there be?

Let P – total number of possible passwords

Pi – total number of passwords of length i, i = 6,7,8

P = P6 + P7 + P8      (sum rule)

Pi – computing it directly is tricky (hmm…) -

“popular” counting trick: let’s calculate all of them, including those with no 

digits and then subtract the ones with no digits.

Pi= 36i – 26i

P = 366 – 266+ 367 – 267 + 368 – 268 = 2,684,483,063,360



IP Address Example

(Internet Protocol v. 4)

An address is a string of 32 bits – it begins with a network id (netid), followed 

by a host number (hostid), which identifies a computer as a member of a 

particular network.

Main computer addresses are in one of 3 types:

– Class A (largest networks): address contains a 0 followed by 7-bit “netid” ≠ 17,  and a 24-

bit “hostid”

– Class B (medium networks): address contains a 10 followed by a 14-bit netid and a 16-bit 

hostid.

– Class C (smallest networks): address contains a 110 has 21-bit netid and an 8-bit hostid.

Netids all 1s are not allowed. Hostids that are all 0s or all 1s are not allowed.

How many valid IP addresses are there?



Example Using Both Rules:

IP address solution

(# addrs)  = (# class A) + (# class B) + (# class C)
(by sum rule)

# class A = (# valid netids)·(# valid hostids)
(by product rule)

(# valid class A netids) = 27 − 1 = 127.

(# valid class A hostids) = 224 − 2 = 16,777,214.

Continuing in this fashion we find the answer is:
3,737,091,842  (3.7 billion IP addresses)
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Wedding pictures example

Consider a wedding picture of 6 people

– There are 10 people, including the bride and groom

How many possibilities are there if the bride must be in the picture?

Product rule: place the bride AND then place the rest of the party

First place the bride

• She can be in one of 6 positions

Next, place the other five people via the product rule

• There are 9 people to choose for the second person, 8 for the third, etc.

• Total = 9*8*7*6*5 = 15120

Product rule yields 6 * 15120 = 90,720 possibilities

Q.: Are we counting same subsets of folks in different positions?

Yes! (note bride is treated “differently”; has to be in; draw diagram)
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Wedding pictures example

Consider a wedding picture of 6 people
– There are 10 people, including the bride and groom

How many possibilities are there if the bride and groom must both be in the 
picture

Product rule: place the bride/groom AND then place the rest of the party

First place the bride and groom
• She can be in one of 6 positions

• He can be in one 5 remaining positions

• Total of 30 possibilities

Next, place the other four people via the product rule
• There are 8 people to choose for the third person, 7 for the fourth, etc.

• Total = 8*7*6*5 = 1680

Product rule yields 30 * 1680 = 50,400 possibilities
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Wedding pictures example

Consider a wedding picture of 6 people

– There are 10 people, including the bride and groom

How many possibilities are there if only one of the bride and groom are in the picture?

Sum rule: place only the bride

• Product rule: place the bride AND then place the rest of the party

• First place the bride

⚫ She can be in one of 6 positions

• Next, place the other five people via the product rule

There are 8 people to choose for the second person, 7 for the third, etc.

» We can’t choose the groom!

Total = 8*7*6*5*4 = 6720

• Product rule yields 6 * 6720 = 40,320 possibilities

⚫ OR place only the groom

• Same possibilities as for bride: 40,320

Sum rule yields 40,320 + 40,320 = 80,640 possibilities

(hmm… quickly, how many?)
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Wedding pictures example

Consider a wedding picture of 6 people

– There are 10 people, including the bride and groom

Alternative means to get the answer

How many possibilities are there if only one of the bride and groom are in the picture?

Total ways to place the bride (with or without groom): 90,720 

• See before.

Total ways for both the bride and groom: 50,400

• See before.

Total ways to place ONLY the bride: 90,720 – 50,400 = 40,320

Same number for the groom

Total = 40,320 + 40,320 = 80,640
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The inclusion-exclusion principle
(seen briefly when we did sets)

When counting the possibilities, we can’t include a given 

outcome more than once.

|A1 U A2| = |A1| + |A2| - |A1 ∩ A2|

– E.g. Let A1 have 5 elements, A2 have 3 elements, and 1 element be 

both in A1 and A2

– Total in the union is 5+3-1 = 7, not 8



Inclusion-exclusion example

How may bit strings of length eight start with 1 or end with 00?

Count bit strings that start with 1
– Rest of bits can be anything: 27 = 128

– This is |A1|

Count bit strings that end with 00
– Rest of bits can be anything: 26 = 64

– This is |A2|

Count bit strings that both start with 1 and end with 00
– Rest of the bits can be anything: 25 = 32

– This is |A1 ∩ A2|

Use formula |A1 U A2| = |A1| + |A2| - |A1 ∩ A2|

Total is 128 + 64 – 32 = 160



How many bit strings of length 10 contain either 5 

consecutive 0s or 5 consecutive 1s?
Consider 5 consecutive 0s first

Sum rule: the 5 consecutive 0’s can start at position 1, 2, 3, 4, 5, or 6

– Starting at position 1

• Remaining 5 bits can be anything: 25 = 32

– Starting at position 2

• First bit must be a 1

– Otherwise, we are including possibilities from the previous case!

• Remaining bits can be anything: 24 = 16

– Starting at position 3

• Second bit must be a 1 (same reason as above)

• First bit and last 3 bits can be anything: 24 = 16

– Starting at positions 4 and 5 and 6

• Same as starting at positions 2 or 3: 16 each

– Total = 32 + 16 + 16 + 16 + 16 + 16 = 112

The 5 consecutive 1’s follow the same pattern, and have 112 possibilities

There are two cases counted twice (that we thus need to exclude): 

0000011111 and 1111100000

Total = 112 + 112 – 2 = 222
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Tree diagrams

We can use tree diagrams to enumerate the possible choices.

Once the tree is laid out, the result is the number of (valid) leaves.



Tree diagrams example

Use a tree diagram to find the number of bit strings of length four with no three 

consecutive 0s



Pigeonhole Principle

If k+1 objects are assigned to k places, then at least 1 place 

must be assigned ≥2 objects. 

Proof: (by contradiction)

Suppose none of the k places contains more than one object. Then the total 

number of objects would be at most k. This is a contradiction, since there 

are k + 1 objects. QED ☺

In terms of the assignment function: 
If  f: A→B and  |A|≥|B|+1, then some element of B

has ≥2 pre-images under f.  I.e., f is not one-to-one.



More pigeons than pigeonholes



Example

How many students must be in a class to guarantee that at 

least two students receive the same score on the final exam, 

if the exam is graded on a scale from 0 to 100 points?

102

So, if a million students take a national test with say 100

questions, many must have the same score (in expectation

10,000). So, would need at least a million questions to get a chance of a 

unique score for everyone.



Simple Example

It’s dark;  you know that in your drawer there are: 

12

10



Simple Example

It’s dark;  you know that in your drawer there are: 

12

10

But you can’t see a thing. How many socks should you get to guarantee a correct pair?

What does it have to do with the pigeon hole principle?

10+12

1 hole per colorA.: 3



There must be at least two people in New York city with exactly

the same number of  hairs on their heads. Why?

Typical head of hair has around 150,000 hairs. So, it is reasonable to assume 

that no one has more than 1,000,000 hairs on their head (m = 1 million 

holes). 

There are more than 1,000,000 people in NYC (n is bigger than 1 million objects). 

If we assign a pigeonhole for each number of hairs on a head, and assign 

people to the pigeonhole with their number of hairs on it, there must be at 

least two people with the same number of hairs on their heads.

Useful stuff to know… ☺
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Generalized Pigeonhole Principle

If N≥k+1 objects are assigned to k places, then at 

least one place must be assigned at least N/k

objects.

E.g., there are N = 280 students in a class. There are k = 52 

weeks in the year.

– Therefore, there must be at least 1 week during which 

at least 280/52 = 5.38 = 6 students in the class have 

a birthday.



Proof of G.P.P.

By contradiction.  Suppose every place has < N/k objects, 

thus ≤ N/k−1.

Then the total number of objects is at most

So, there are less than N objects, which contradicts our assumption of N

objects!  

N
k

N
k

k

N
k

k

N
k =








=








−








+








−








111

QED
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G.P.P. Example

Given: There are 280 people in the party.  Without knowing anybody’s 

birthday, what is the largest value of n for which we can prove that at 

least n people must have been born in the same month?

Answer:

280/12 = 23.3 = 24



A bowl contains 10 red and 10 yellow balls

How many balls must be selected to ensure 3 balls of the same color?

– One solution: consider the “worst” case

• Consider 2 balls of each color

• You can’t take another ball without hitting 3

• Thus, the answer is 5

– Via generalized pigeonhole principle

• How many balls are required if there are 2 colors, and one color must have 3 
balls?

• How many pigeons are required if there are 2 pigeon holes, and one must have 3 
pigeons?

• number of boxes: k = 2

• We want  N/k = 3

• What is the minimum N?

• N = 5



A bowl contains 10 red and 10 yellow balls

How many balls must be selected to ensure 3 yellow balls?

– Consider the “worst” case

• Consider 10 red balls and 2 yellow balls

• You can’t take another ball without hitting 3 yellow balls

• Thus, the answer is 13



Consider 5 distinct points (xi, yi) with integer values, where i = 1, 2, 3, 4, 5.

Show that the midpoint of at least one pair of these five points also has integer 
coordinates.

Thus, we are looking for the midpoint of a segment from (a,b) to (c,d)

– The midpoint is ( (a+c)/2, (b+d)/2 )

Note that the midpoint will be integers if a and c have the same parity: are 
either both even or both odd

– Same for b and d

There are four parity possibilities

– (even, even), (even, odd), (odd, even), (odd, odd)

Since we have 5 points, by the pigeonhole principle, there must be two points 
that have the same parity possibility

– Thus, the midpoint of those two points will have integer coordinates.

PH principles can be pop up in “all kinds of places”…

QED



“The party problem”

Dinner party of six: Either there is a group of 3 who all 
know each other, or there is a group of 3 who are all 
strangers.

Consider one 
person.

She either knows or doesn’t 
know each other person.

But there are 5 other people!  
So, she knows, or doesn’t 
know, at least 3 others.

(GPH)

Let’s say she knows 3 others.

If any of those 3 know each other, we 
have a blue , which means 3 people 
know each other.  Contradicts 
assumption.

So they all must be strangers. But then we

have three strangers. Contradicts 
assumption.

The case where she doesn’t know 3 
others is similar. Also, leads 
to constradiction.

So, such a party does not exist! 
QED

By contradiction. Assume we have a party of six

where no three people all know each other

and no three people are all strangers.
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Permutations

A permutation of a set S of objects is an ordered arrangement of the elements 
of S where each element appears only once:

e.g., 1 2 3,    2 1 3,    3 1 2

There are n! permutations of n objects. (by product rule)

An ordered arrangement of r distinct elements of S is called an r-permutation.

The number of r-permutations of a set S with n=|S| elements is 

P(n,r) = n(n−1)…(n−r+1) = n! / (n−r)!
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Permutations

In a running race of 12 sprinters, each of the top 5 finishers 
receives a different medal.  How many ways are there to 
award the 5 medals?

a) 60
b) 125

c) 12!/7!
d) 512

e) No clue

12 11 10 9 8

A.: 12!/7!



Permutations

Suppose you “have” time to listen to 10 songs on your daily 
jog around campus.  There are 6 A tunes, 8 B tunes, and 
3 C tunes to choose from.

Finally, suppose you still want 4 A, 4 B, and 2 C tunes, and the 
order of the groups doesn’t matter, but you get dizzy 
and fall down if all the songs by any one group aren’t 
played together.

How many playlists are there?

P(6,4) x P(8,4) x P(3,2) x 3!
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Combinations

The number of ways of choosing r elements from S (order does not

matter).

S={1,2,3}

e.g., 1 2 ,    1 3,     2 3

The number of r-combinations C(n,r) of a set with n=|S| elements is

!
( , )

!( )!

n n
C n r

r r n r

 
= = 

− 

“n choose r”. Also called a “binomial coefficient”.

= P(n,r) / r!
Note: we have  C(n,r) = C(n, n−r)
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Combination Example

How many distinct 7-card hands can be drawn from a standard 52-card 

deck?

– The order of cards in a hand doesn’t matter.

Answer C(52,7) = P(52,7) / P(7,7)

= 52·51·50·49·48·47·46 / 7·6·5·4·3·2·1

= 52.17.10.7.2.47.23

= 133,784,560



Permutations

In how many ways can 5 distinct Martians and 3 distinct Jovians 
stand in line, if no two Jovians stand together? Hmm…

M1 M2 M3 M4 M5

5! X P(6,3)

= 5! x C(6,3) x 3!



46

Combinatorial proof

A combinatorial proof is a proof that uses counting arguments to prove a 
theorem.
– Rather than some other method such as algebraic techniques

Most of the questions in this section are phrased as, “find out how many 
possibilities there are if …”
– Instead, we could phrase each question as a theorem:

– “Prove there are x possibilities if …”

– The same answer could be modified to be a combinatorial proof to the 
theorem



Circular seatings
How many ways are there to sit 6 people around a circular table, where 

seatings are considered to be the same if they can be obtained from each 

other by rotating the table?

First, place the first person in the north-most chair

– Only one possibility 

(why can we restrict ourselves to only one specific person in that chair?)

Then place the other 5 people

– There are P(5,5) = 5! = 120 ways to do that

any more issues with rotating table?

no!

By the product rule, we get 1*120 =120

Alternative means to answer this:

There are P(6,6) = 720 ways to seat the 6 people around the table

For each seating, there are 6 “rotations” of the seating

Thus, the final answer is 720/6 = 120



Horse races

How many ways are there for 4 horses to finish if ties are allowed?
– Note that order does matter!

Solution by cases
– No ties

• The number of permutations is P(4,4) = 4! = 24

– Two horses tie
• There are C(4,2) = 6 ways to choose the two horses that tie

• There are P(3,3) = 6 ways for the “groups” to finish
– A “group” is either a single horse or the two tying horses

• By the product rule, there are 6*6 = 36 possibilities for this case

– Two groups of two horses tie
• There are C(4,2) = 6 ways to choose the two winning horses

• The other two horses tie for second place

– Three horses tie with each other
• There are C(4,3) = 4 ways to choose the two horses that tie

• There are P(2,2) = 2 ways for the “groups” to finish

• By the product rule, there are 4*2 = 8 possibilities for this case

– All four horses tie
• There is only one combination for this

– By the sum rule, the total is 24+36+6+8+1 = 75
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Binomial Coefficients

(a + b)4 = (a + b)(a + b)(a + b)(a + b)

=    a4

  

 

4

0

 

 
 

 

 
 +    a3b

  

 

4

1

 

 
 

 

 
 +    a2b2

  

 

4

2

 

 
 

 

 
 +    ab3

  

 

4

3

 

 
 

 

 
 +    b4

  

 

4

4

 

 
 

 

 
 

Binomial Theorem:  Let x and y be variables, and let n be any 
nonnegative integer.  Then

  

 

(x + y)n =
n

j

 

 
 

 

 
 

j =0

n

 x n− jy j



  

 

(x + y)n =
n

j

 

 
 

 

 
 

j =0

n

 x n− jy j

What is the coefficient of a8b9 in the expansion of (3a +2b)17?

What is n? 17

What is j? 9

What is x? 3a

What is y? 2b
 

17

9

 

 
 

 

 
 (3a)

8(2b)9 =
17

9

 

 
 

 

 
 3
829a8b9



Binomial Coefficients

(a + b)2 = a2 + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

What is coefficient 
of a9b3 in (a + b)12?

A. 36
B. 220
C. 15
D. 6
E. No clue

Pascal’s triangle

A.: 220



  

 

(x + y)n =
n

j

 

 
 

 

 
 

j =0

n

 x n− jy j

Binomial Coefficients

Sum each row of Pascal’s Triangle:

Powers of 2

  

 

n

j

 

 
 

 

 
 

j =0

n

 = 2n Suppose you have a set of size 
n.  How many subsets does 
it have?

2n

How many subsets of size 0 
does it have?

nC0

How many subsets of size 1 
does it have?

nC1

How many subsets of size 2 
does it have?

nC2

Add them up we have the result. QED



  

 

(x + y)n =
n

j

 

 
 

 

 
 

j =0

n

 x n− jy j

  

 

n

j

 

 
 

 

 
 

j =0

n

 = 2n

Pick x=1 and y=1 !

QED

  

 

n

j

 

 
 

 

 
 

j =0

n

 1n− j1 j
= (1 +1)n

  

 

n

j

 

 
 

 

 
 

j =0

n

 = 2n

Alternative (clever) proof? Look at binomial theorem…

x and y are variables; can pick

any numbers… hmm…



Combinations with repetition

There are C(n+r-1,r), r-sized combinations from a set of n 

elements when repetition is allowed.

Example:  How many solutions are there to the equation

When the variables are nonnegative integers?

  

 

x1 + x2 + x3 + x4 =10

  

 

1+3+ 6+ 0 =10

C(13,3)

11 locations for

bars. Pick 3 

allowing repetitions.

Proof. See thm. 2, section 5.5.



a

b

c

Counting paths

A turtle begins at the upper left corner of an n x m grid and 
meanders to the lower right corner.

How many routes could she take if she only moves right and 
down? Hmm…








 +
=







 ++

m

mn

m

1-m  1n

n = 6

m = 4

Need m steps down.

n+1 positions

to go down.








 +

m

mn
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b

c

Counting paths

A turtle begins at the upper left corner of an n x m grid and 
meanders to the lower right corner.

How many routes could she take if she only moves right and 
down? Hmm…








 +
=







 ++

m

mn

m

1-m  1n

n = 6

m = 4

Need m steps down.

n+1 positions

to go down.








 +

m

mn
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Permutations with indistinguishable objects

How many different strings can be made from the letters in 
the word rat?

6

How many different strings can be made from the letters in 
the word egg?

3
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Permutations with indistinguishable objects

How many different strings can be made from the letters in 
the phrase nano-nano?

Key thoughts:  8 positions, 3 kinds of letters to place.

In how many ways can we place the ns? 8C4, now 4 spots are left

In how many ways can we place the as? 4C2, now 2 spots are left

In how many ways can we place the os? 2C2, now 0 spots are left

 

8

4

 

 
 

 

 
 
4

2

 

 
 

 

 
 
2

2

 

 
 

 

 
 =

8!

4!4!

4!

2!2!

2!

2!0!
=

8!

4!2!2!
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Permutations with indistinguishable objects

How many distinct permutations are there of the letters in 
the word APALACHICOLA?

  

 

12!

4!2!2!

How many if the two Ls must appear together?

  

 

11!

4!2!

How many if the first letter must be an A?

  

 

11!

3!2!2!
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A little practice

In how many ways can 11 identical computer science books and 
8 identical psychology books be distributed among 5 
students?

Hint:  forget about the psychology books for the moment.

Hint:  how can you combine your soln for the CS books with your soln 
for the Psych books?

  

 

15

11

 

 
 

 

 
 

12

8

 

 
 

 

 
 


